TTIC, Vol.8, 2024

A Critical Analysis of Dynamic Resource Allocation
and Load Balancing in Multi-Cloud Environments

H. Rehan Vibashana Perera
School of Computer Science, University of Sunderland

Abstract

This research paper addresses the pressing
challenge of dynamic resource allocation and
load balancing in multi-cloud environments.
With the growing adoption of cloud computing,
organizations increasingly rely on multiple cloud
providers to meet their diverse needs. Effective
resource allocation and load balancing are
critical to optimizing performance and cost
efficiency. This paper reviews and evaluates
current research, presents a methodology for
enhancing dynamic resource allocation, conducts
a real world validity analysis of existing
research,
conclusions. It emphasizes the significance of
customized multi-cloud solutions in the ever-

and formulates well-reasoned

evolving realm of cloud computing.

Keywords— Multi-Cloud, Dynamic Resource
Allocation, Load Balancing, Critical Analysis

1. Introduction
The advent of
revolutionized the IT

cloud computing has

landscape, offering
scalability, flexibility, and cost effectiveness.
Multi-cloud environments, characterized by
using multiple cloud providers, have become a
common strategy for organizations to diversify
their infrastructure, minimize vendor lock-in, and

ensure redundancy.

research carried out by Saxena, Gupta, and
Singh, (2021) assessed the CHARM model for
multi-cloud data hosting. This model aims to
balance cost-effectiveness and high availability.
It achieves this by using a "Proxy" system to
manage data distribution across the multi-cloud
infrastructure and combining replication and
erasure coding for cost reduction and data
assurance.

50

Alam, Fadlullah, and Choudhury, (2021) state
“The core idea behind optimal resource
allocation is to approach it in a conversational
tone. It involves finding the best way to manage
resources by considering various factors,
including cost efficiency, resource utilization,
and the maximization of quality standards.”

In the study by Rodigari et al., (2021), state “the
focus lies on assessing the performance of CPU,
memory usage, and latency in the context of
HTTP requests when Istio is implemented in a
multi-cloud environment.” Their research
introduces a multi-cloud framework along with a
testing workflow aimed at evaluating the data
plane's performance under heavy loads and
understanding how enabling zero trust affects the
control plane.

Initial test| findings|indicate that Istio contributes
to a reduction in latency variability when
responding to sequential HTTP requests.
Additionally, the study highlights that the overall
CPU and memory utilization can fluctuate based
on the specific service mesh configuration and
the cloud environment in use.

However, managing resources effectively and
achieving proper load balancing in such diverse
cloud environments presents a set of substantial
challenges.

In a recent study by Saif et al., (2023) they
pointed out that traditional load balancing
methods often suffer from
communication overhead and don't adequately

excessive
address the complexities of multi-cloud setups.

Moreover, web-based applications often
encounter sudden surges in traffic, known as
"flash crowds," which can lead to resource
shortages and performance bottlenecks.

Adewojo and Bass, (2022) found that
adopting decentralized systems with
dynamic geographical load balancing,
coupled with a load distribution algorithm
based on various server metrics, resulted in
significant performance enhancements for
three-tier web applications in multi-cloud
environments.

Throughout the course of this paper, we will
delve into the dynamic allocation of
resources and the implementation of
effective load-balancing strategies in the
context of multi-cloud environments, with
the overarching goal of optimizing resource
utilization and elevating system
performance.

2. Current Work for effective multi-cloud
environment

Following section is related to dynamic
resource allocation and load balancing in
multi-cloud environments reveals several
key trends and contributions:

I. Dynamic Allocation

Much of the existing research has
historically focused on static resource
allocation strategies, which provision

resources based on anticipated workloads.
However, the dynamic nature of multi-cloud
environments necessitates the adoption of
real-time allocation mechanisms.

Alam, Fadlullah, and Choudhury, (2021) put
forth a model wherein they propose an
evaluation framework for trust in cloud
computing, grounded in four crucial Key
quality attributes, including data integrity,
availability, reliability, and efficiency, are
essential factors. Also, primary objectives in
this model (figl) are to streamline resource
allocation, taking trust into account while
simultaneously minimizing communication
delays.

51

TTIC, Vol.8, 2024

DC1 of CSP 2

/ Broker
=/

| Allocate resources
@ | for maximizing trust |

DC1of CSPN

and minimizing delay /

Figure 1 Resource Allocation Model
(Alam, Fadlullah, and Choudhury, 2021)

To tackle this challenge, they employ a
genetic algorithm (fig2) as a heuristic
approach, and they substantiate the
effectiveness of their method through a
series of experiments.

¢ ol all CSPs
v cired Pire efficiency of

rreffic of all Vs

- The best VM allocariorn

ser wirh mcaxirmen ffiness value CRe
for all incoming requests rg = TG
for all existing CSPs 1 = N
for all available servers s
Estimate trust

Estimate delay

= S, do

end for
end for
end for
CRy ~— Inirialize rthis ser empry
10 Randomly generate a set of € chromosomes
11: Ewvaluate fitness (trustand delay) for the above © chro-

fENpMpUN .

mosomes

12: generarion — O

13: whille gencrarion —=— MAX goperarion

1a: while new chromosomes set w2 €

1s: Select two chromosomes applying roulette wheel
operator

16: Based on the crossover probability, erossover ocours

17: According to the mutation probability, mutation
oecurs

1s: end while

19: Estimate fitness of the new set of chromosomes.

20: Select the fittest chromosomes €, using selection oper-
ation

=1: A (CR) = F(CREY

z2: CRp — CRn

2§ cnd if

24- perierniiion | =— | gesrercatiomn 4 1

25 end while

26: return the best allocation set (CRp)

Figure 2 Algorithml (Alam, Fadlullah, and
Choudhury, 2021)

They conduct experiments to test evaluating
the effectiveness of their proposed method in
enhancing quality attribute performance in a
cloud context, they employ Cloud Sim for
data collection and MATLAB for optimizing
resource allocation (fig3). Then the trust
evaluation model is implemented using the
collected data, and the trust value is
The optimizer and Genetic Algorithm (GA)
are seamlessly integrated into the
optimization model, executed within
MATLAB environments for analysis.

=@ Hoavy loail
o Weiurm ko
0esr HH,,_ B Emal kkad |
H""'\-\-\
0.9 . .

g —

»\i_: |

Ul 1

Anvallability
=
[

i i i i i
Scanario £ Scanari 3 Soanaro 4
Prablam Size

Scenarnio 1

Figure 3 Resources under Different loads
(Alam, Fadlullah, and Choudhury, 2021)

Then the experiments encompass various
scenarios to assess the approach's
practicality. They conduct a performance
comparison between their heuristics and the
optimal solution, demonstrating that the
Genetic algorithm achieves a remarkable
90% similarity to the exact solution.

12 T T T

I vimal soluton
[GA sokition

Dbjective
L

Scanario 1 Socanaria 2 Soananc 3 Seenaric 4

Problam Size
Figure 4 Optimal and Genetic Algorithm

Comparison (Alam, Fadlullah, and
Choudhury, 2021)

The execution time of the Genetic Algorithm
increases linearly with an increase in the
number of the CSPs and servers, ensuring
the validity of the proposed trust model in a
practical cloud environment.

Alyas et al. (2023) presents a framework
aimed at Improving the Quality of Service
(QoS) and allocating resources effectively in

52

TTIC, Vol.8, 2024

multi-cloud environments (see fig5). The
framework focuses on three key parameters:
data accessibility, optimization, and
collaboration, which are derived from
existing literature and various cloud models.
These parameters guide dynamic resource
allocation, improving QoS within
decentralized multi-cloud platforms.

Tests QoS Goals

- 1 AppConfig
e

Cluster Management

3

Threads
Config

w N\

Test StateModel —— Model Analysis ‘{

Testloglc Stepping
Controllers Plan
53

Figure 5 proposed framework (Alyas et al.
2023)

The framework employs an optimization
technique based on these parameters, which

are further — subdivided for resource
allocation and long-term service quality
assessment.. While the framework's
effectiveness is confirmed through

simulation experiments using the CloudSim
simulator.

Resouree Alfocation

Compute ‘ ’ Storage ‘ Network

ll

=3

Host
Virtualization

Data Sharing Resource Pool

Rejection ‘ Incentives ‘ Cloudlets Configuration

Capacity

Process
‘ D) Evaluation

Resource
Capacity

J Data Center
)

Quality of Service (Q0S) Controller

Figure 6 multi-cloud resource allocation
Parameters (Alyas et al. 2023)

The framework also addresses resource

allocation 1in decentralized multi-cloud
environments. It distinguishes between
scenarios with a central entity and

decentralized multi-cloud configurations,
with a particular focus on the latter's
complexity. In decentralized multi-cloud
settings, cooperation among resource

providers is pivotal for achieving optimal
quality of service (fig6).

However, this cooperation is challenged by
the heterogeneous nature of multi-cloud
environments, where providers may have
varying incentives and goals. Balancing
optimization and cooperation efficiency is
crucial for achieving performance and
service goals.

Cooperation with Optimization

Figure 7 Impact Analysis Optimization
(Alyas et al. 2023)

Using the CloudSim simulator, the study
validates the proposed resource allocation
framework in decentralized multi-cloud
settings (fig7). The simulation considers key
factors: a decentralized multi-cloud, a
broker, and a load manager. Initially, without
the framework, resource capacity declines
during peak hours.

Figure 8 performance improvement (Alyas
etal. 2023)

Subsequently, with the framework, there is a
significant ~ resource boost (fig7,8),
particularly in computers, storage, and
networks. This framework optimizes
resource allocation, enhances service

53

TTIC, Vol.8, 2024

quality, and demonstrates stability in the
simulation, suggesting real-world potential.

Selvapandian and Santhosh, (2022)
introduce a novel framework that focuses on
optimizing resource allocation in multi-
cloud environments (fig9). The research
presents a hybrid optimization algorithm
called the Bat Algorithm Particle Swarm
Optimization (BAPSO) for this purpose.

Scheduled

Identification
of optimal resources

" Multicloud
using BA-PSO T

T Y

o)

Figure 9 Introduced Resource Allocation
Model (Selvapandian and Santhosh, 2022)

8

Optimal
resouree

This algorithm combines the strengths of bat
optimization and particle swarm
optimization to address challenges in multi-
cloud = resource allocation. The bat
optimization . algorithm excels in finding
global optimal solutions, while the particle
swarm optimization algorithm is known for
its quick convergence characteristics. By
leveraging these attributes, the hybrid
approach aims to provide an efficient
resource allocation model for multi-cloud
environments (fig10).

Figure 10 Hybrid Optimization Model
(Selvapandian and Santhosh, 2022)

Extensive simulation experiments validated
their model's effectiveness. The BAPSO-
based approach outperformed conventional
methods, excelling in resource allocation
efficiency, energy conservation, reduced
SLA violations, and faster allocation times
(figll).

Parameter Value
Total number of clouds 16
Total number of hosts 40
VM speed 2002000 MIPS
Memaory s00-1 TB
Input task length — 30005000
Hypervisor xen
Parameter Value
Bat size 15
Acceleration constants L.04
Maximum number of iterations 150
Frequency, loudness, pulse rate (minimum) 0
Frequency, loudness, pulse rate {maximum) 3L 2
Loudness constant .96
Pulse rate constant 0.9
Figure 11 Testing Parameters

(Selvapandian and Santhosh, 2022)

This study emphasizes the inherent
complexity of resource allocation in cloud
computing, particularly in multi-cloud
environments. It underscores the importance
of considering resource availability and
capability prior to allocating resources to
requested tasks.

TTIC, Vol.8, 2024

Algorithm Energy consumption [kWh| | Execution time [sec]
Genetic algorithm [23] 380 110
ACO 23] 460 135
GA-RF 23] 310 0
Proposed BAPS0 200 7.2
Figure 12 Performance Comparison

(Selvapandian and Santhosh, 2022)

Additionally, this study shows the dynamic
update of membership functions, a critical
aspect ensuring QoS requirements are met,
and resource allocation performance is
optimized (figl2). Ultimately, Selvapandian
and Santhosh, (2022) present a pioneering
approach that significantly improves
resource allocation within multi-objective
cloud environments.

In Chen, (2023) study, an innovative
approach to multi-objective optimization
task scheduling within a multi-cloud
environment was introduced, emphasizing
the application of dynamic programming
(figl3). To support this research, a Java-
based task-scheduling simulation tool was
meticulously crafted, serving as a platform
to evaluate the proposed algorithm's efficacy
through comprehensive simulation
experiments.

- A
'\-‘,‘_\‘ Cleiud '..':';,;o providerl
ram task

W %\kﬂ'f""

storage task
Cloud service provider3

e T—
ik execute task
]

W‘_’E::R':Lﬂz sk

Cloud service provider2

Figure 13 Scheduling process (Chen, 2023)

The experiments were intricately designed to
address the challenge of efficiently
managing multi-user tasks originating from

lower-tier mobile devices, which were then
dispatched to the nearest cloud server for
processing. This complex allocation process
was facilitated by a tailored multi-objective
dispatching model and a well-conceived
kinetic ~ planning algorithm (figl4),
specifically tailored to the intricacies of
multi-cloud environments.

Algorithm : A dynamic programming driven multi-objective optimised
task dispatching algorithm

Inputy n-Tasks to be processed, a[]-The set of time required by server a
to process the task.b[]-The set of time required by server b to process the
task,sum-Initialize array

Outputy result = get_result{a, b, n)

Procedure:

1. sum=a[0]:

2. for(int k= 1:k < nk++) sum +=a[k]:

3 K[= k-1 [biK:

4. fTk][x] = min(fTk-1][x-a[k]].fTk-1][x]+b[k]):

5. ifik == n-1) val = max(x, flk][x]}

6. ifival < resultyresult = val return result;

7. result = get_result{a, b, n);

Figure 14 Description of the algorithm
(Chen, 2023)

Notably, the research delved into the
intricate realm of resource allocation within
cloud environments, culminating in the
development of a multi-goal task
dispatching model fine-tuned to cloud-
specific nuances (figl4). Additionally, they
ventured into the formalization of the
optimization problem for multi-objective
tasks, resulting in a solution algorithm
grounded in dynamic programming
principles.

Crucially, the study rigorously examined the

proposed method's validity through
meticulous simulation experiments,
affirming its effectiveness within the
controlled simulated environment
(figl5,16).

55

TTIC, Vol.8, 2024

Figure 15 increase of response time
(Chen, 2023)

Figure 16 Cost effectivity (Chen, 2023)

However, it's worth noting a limitation: the
study lacks conclusive evidence regarding
real-world = applicability. Though the
research provides a solid foundation,
practical validation in multi-cloud scenarios
is crucial.

Those recaches highlights the crucial
importance of trust assessment in multi-
cloud settings, emphasizing the need to
consider various quality attributes when
allocating resources to cloud infrastructures.

II. Load Balancing Techniques

Various load-balancing techniques and
strategies aim to distribute workloads evenly
across cloud providers, thereby preventing
overutilization or underutilization of
resources.

Saif et al. (2023) presents a groundbreaking
solution, the CSO-ILB (Chicken Swarm
Optimization for Load Balancing), designed
to revolutionize load distribution within
containerized multi-cloud environments
(figl7).

This innovative approach
chicken swarm optimization algorithm,
drawing inspiration from the efficient
foraging behavior of chickens. It excels in
selecting the optimal under-loaded
container, effectively distributing workloads
across available containers, and addressing
load balancing challenges.

leverages a

Seli-Adapaation)/

0 SLIN IR

==

) Evabsation
- "4 SOUIL
/ |
— N Controller he E
® alisig~]
.= = ision

e TN —_—

Figure 17 proposed solution (Saif et al.
2023)

However, CSO-ILB's contributions extend

beyond load balancing. It showcases
impressive horizontal and vertical
scalability, achieved through adaptive

scaling options.

memsse=Graph Traversal==========

Figure 18 Make-Span scheduling. (Saif et
al. 2023)

A notable feature is its autonomic multi-loop
self-adaptation system, which dynamically
responds to changes within the multi-cloud
ecosystem, thereby enhancing the efficiency
of scaling decisions (figl8).

56

TTIC, Vol.8, 2024

To assess its effectiveness, the research
subjected CSO-ILB to rigorous simulations

within a

environment,
ContainerCloudsim
simulations
comparison

containerized
employing
toolkit.
entailed a
with existing

multi-cloud

the

These
comprehensive
algorithms,

showcasing CSO-ILB's superiority across a
diverse spectrum of metrics (figl9).

Inpuits ¢, , ¢

Qutpat: Paretp Solution 5 indicating the optimally chosen containers for task
migraion

1

)

= L A

8.
lj.

10

11

12
13,

14.

15

16,
17.
I8
19.

20

21
1z

1
“'\

u

Initialize all the parameters & 4 €M and 8
Initialize the chickens in the swarm randomly as O =125

Initialize the totl count of iterations os Wi,

While 7 < Max,, do

If {7 %t = 0} then

Establish the hierarchical order through ranking of chickens
Pattition the swarm group and identify the mother-child relationship
End if

For (j = 1)do

If [l |'r’|J.1'|'|'\"||j|'

Perform kocal u|'|11:|1|‘ of the rooster's lncation using (25]
End if

If {f = hew)do

Perform local update of the hen's location using (27)

End if

T {f i et

Perform kocal update of the chick"s location using 30
End if

Estimatc the finess of the obtained solution using (15)

IF the: solution outperforms the older one < update location
End for

Label the best solutien us pareto optimal solution 3

End while

Retum 5

Figure 19 CSO-ILB Algorithm (Saif et al.

2023)

These metrics encompassed CPU utilization,
make-span, response time, execution cost,
reliability, energy utilization, idle time, and
task migrations.

Beyond load balancing, CSO-ILB aligns
seamlessly with the objectives of both cloud
users and providers. It represents a
significant leap forward in addressing the
intricate challenges of load balancing within

modern multi-cloud environments.

Response Time

0
nsa
AN
. [l
1000 oo 3000 4000 Sp00

Waorlkdoad
®ACOSECO & ASFLA C5O ® ACOFTF © ACC-ABC © HHO-PIO 8 QODA-LE @ MrLEA 8 CMODLE 8 APDPSO & CS0-ILB

Figure 20 Response Time Improvement
(Saif et al. 2023)

In doing so, it contributes substantially to the
ever-evolving landscape of cloud
computing, promising enhanced efficiency
and performance in this dynamic domain
(fig20).

Zhang et al. (2021) present a comprehensive
exploration of cloud computing, with a
specific focus on Continuous Writing
Applications (CWAs) that generate
substantial real-time data. Recognizing the
growing demand for efficient data
transportation, storage, and analysis, the
study introduces an innovative multi-cloud
load-balancing architecture designed 'to
address user resource requirements while
optimizing costs.

User Pool

User Broker

Figure 21CSP user and broker (Zhang et
al. 2021)

The investigation centers on Infrastructure-
as-a-Service (I1aaS) Cloud Service Providers
(CSPs) and utilizes a mathematical model to
encapsulate crucial factors, including user

TTIC, Vol.8, 2024

resource needs, CSP utility costs, and inter-
cloud communications (fig21). Furthermore,
the paper delves into the collaborative
potential of multi-cloud setups to enhance
data backup and fortify system reliability.

Step 1: Initinlization
Construct the set of load paths. Ps. using SalPF.
For k=1 to m, where m = |cy].
Set By =0,%=0.0G=0
End For.
Calculate the FOL of each path in Py by using (10).
Construct L4, sorting the users according to SA, SB, or SC
Step 2: Main Loop
For each priority j.
For i =1 to n. where n = |t
Sort the path in Py according to the FDL from lowest to highest.
Forl=1to 5
Set C5P;_pgq and CSP;_pq along path Py

Set Ry_age = Ri_qape + 1] 308 Ry = Ripae + il
Calculate the FDL of all paths in Po that involve CSPi_wge or
CSPy_pyqy by using (10,

Break Loop of I;

Set a warning “0ut of Recourses, User u; cannot be scheduled!™;
End If
End For
Step 3: End Algorithm
Output a list of users that cannot be scheduled.

Table 3
Algorithm 2: Sub-algorithm of Load Path Finding [SalPF).
Set Pp =@
Fork=1rton
For | = 1 to |Af), where A is the set of neighboring CSPs of CSF;
Construct the load path (CSF, €5P)).
Include (€SP, CSP,) into Py
End Far
End For
Return By.

Figure 22 OSMC algorithm (Zhang et al.
2021)

In this study, they introduce the novel
cooperative multi-cloud load-balancing
algorithm, aptly named Optimal user
Scheduling © for Multi-Cloud (OSMC)
(fig22).. Engineered to fulfill all user
resource requirements while minimizing
costs per user, OSMC leverages the
mathematical model that encompasses key
elements such as user demands, CSP
expenses, and inter-cloud communication
(fig22). Comparative analysis, pitting
OSMC against the round-robin algorithm
selected for its simplicity and efficiency in
job scheduling, underscores OSMC's
superior performance in terms of cost
efficiency.

57

Cost per User in Unit
=

] 1 2 3
Number of Users

Figure 23 Low consumption (Zhang et al.
2021)

Cost per Liser in Unit

o [+X:) 1 15 2 25 3
Mumber of Users 10"

Figure 24 standard comparison (Zhang et
al. 2021)

Through meticulous simulations of OSMC
and the round-robin algorithm, the research
reveals OSMC's distinct advantages in cost-
effectiveness, system scalability, and
efficient utilization of CSP resources within
a 10 CSP Multi-Cloud environment.
Additional experiments further substantiate
OSMC's scalability across various multi-
cloud sizes, affirming its practicality and
ease of implementation. Lastly, this study
underscores OSMC's scalability, flexibility,
and efficiency across diverse practical
scenarios (fig23,24), signifying its potential
as a valuable resource provisioning strategy
for multi-cloud load balancing.

Phalak, (2023) research tackles the dynamic
management of machine learning inference
workloads across diverse cloud providers.
The study introduces the Multi-cloud
System for Inference Request Management
(mSIRM), designed for the edge-fog-cloud

TTIC, Vol.8, 2024

continuum (fig25). mSIRM leverages
multiple cloud vendors and fog computing
resources to minimize Service Level
Objective (SLO) violations.

cLouny e,
@

W Platiorre
'\G-.-nere-':-sll.n:l.u.'r-sx{_.' L‘-. one Learming --':"__-'_,!

1 £

F

? llll
7%
i
11}
1
il

FOiG
O | [Cicustl Pzsirse Mmnages | ———1
. g

|_ mSIRK _/: -
EDGE l”' / J ‘Eﬁ \D'
0 @=m @

Figure 25 MSIRM Architecture (Phalak,
2023)

The research meticulously evaluates and
compares various edge-cloud frameworks
(fig26), with a specific focus on machine
learning and serverless platforms from major
cloud providers. It also explores related
research and algorithms for task scheduling
and resource allocation within this paradigm.

Instanee | i | fi | ¥

Fog 0.0000100931 | OLISTRI4TIZ | -4.338963016

SapeMaker | -0.0000725881 | 0.1904910006 | 127724733681
Figure 26 Constants of edge-fog-

application (Phalak, 2023)

The proposed methodology prioritizes SLO-
aware and cost-effective execution of
inference requests through Machine
Learning as a Service (MLaaS), Function as
a Service (FaaS) platforms, and real-time
instance state data. mSIRM stands out by
employing a regression model-based
approach for workload balancing across Fog,
MLaaS (fig27), and serverless platforms,
optimizing cost efficiency while reducing
SLO violations, distinguishing it from prior
studies using Reinforcement Learning (RL)
algorithms.

Simulation results illustrate mSIRM's
effectiveness in distributing AI workloads
between Fog and cloud services, reducing
SLO violations significantly.

so00 ® Lambda = Cloud Fuentions
450
F ano
E asn
o
E 300
250
8 o0
& 150
£ oo
50
|
an f =) 1x0 180 »00
Cancurrency
o SageMaker ® Veres Al

Response Time [ms)
W =]
EEEREN

_I II II II I|
40 an 13 180 00

Concurrency

Figure 27 Load Split 50% Between Each
Faas & Mlaas (Phalak, 2023)

AWS SageMaker outperforms GCP Vertex
Al, and AWS Lambda exhibits lower latency
than GCP Cloud Functions for warm starts,
albeit with slightly higher costs. In summary,
Phalak's study demonstrates mSIRM's
practicality in optimizing Al workload
distribution, effectively managing costs
while mitigating SLO violations in the edge-
fog-cloud landscape.

Selvakumar, (2020) in his study introduces a
novel load balancing solution tailored for
multi-cloud setups, harnessing an
optimization algorithm rooted in binary ant
colony optimization. This approach
meticulously distributes workloads among
virtual machines, contingent on traffic
patterns and a preliminary evaluation of each
machine's capabilities. The integration of
online services simplifies resource access.

59

TTIC, Vol.8, 2024

| Data pre-processing |

.

Scheduler

Classification

Figure 28 NNS Method (Selvakumar,
2020)

Furthermore, they employ an advanced load-
balancing approach that integrates improved
neural network scheduling and workflows,
thereby enhancing the utilization of underused
virtual machines. This redesigned resource and
load-balancing framework contributes to a boost
in overall efficiency.

Various load balancing algorithms, like GA and
Cloud Balancing Mechanism, strive to evenly
distribute workloads in cloud infrastructures
while minimizing mission scope. They employ
an optimization algorithm designed for binary
ant colonies, known for cost-effectiveness.
Simulations and analyses consistently affirm the
system's efficiency, especially in scenarios with
more virtual machines, as indicated by average
makespan, time study, and cost efficiency

metrics (11g29,30).

180 4
160 4

40

120

Y&Is

100

Cost Anal

—— Existing
== Proposed

34 &6 & 10 12 14 16 18 120
Total number of VMs

Figure 29 Make span average
(Selvakumar, 2020)

1400

1200

s 1 00

S15

800

600

Time Analy

400
=—0— Existing

200 =0 Proposed

Y & & b 12 % s 18 20
Total number of VMs

Figure 30 cost Average (Selvakumar,
2020)

Perform a cost-benefit analysis to assess the
economic implications of resource allocation
and load balancing strategies. Consider
cloud provider pricing models and evaluate
the trade-offs between performance and cost.

3. Comparison of Current Work and Real-
World Validity

In this section, we'll assess how prior work
validates and applies dynamic resource
allocation and load balancing research in
real-world multi-cloud scenarios.

Trust-Based Allocation (Alam, Fadlullah,
and Choudhury, 2021): This technique
introduces trust evaluation into resource
allocation, considering quality attributes like
availability and reliability. It utilizes a
genetic algorithm for optimization,
demonstrating effectiveness in simulations.
Trust-Based Allocation excels in ensuring
resource allocation aligns with trust levels
but may require additional validation in
practical scenarios.

Multi-Objective Framework (Alyas et al.,
2023): Alyas et al.'s framework prioritizes
QoS and resource allocation, especially in
decentralized multi-cloud setups. It offers
scalability and collaboration benefits.
However, its real-world feasibility and
adaptability to diverse use cases require
further exploration.

60

TTIC, Vol.8, 2024

Hybrid Optimization (Selvapandian and
Santhosh, 2022): The BAPSO algorithm
combines the strengths of bat optimization
and particle swarm optimization for resource
allocation. It outperforms traditional
methods in terms of efficiency and energy
consumption. Its adaptability and cost-
effectiveness make it a strong contender.

Multi-Objective Task Scheduling (Chen,
2023): Chen's approach using dynamic
programming address’s multi-objective task
scheduling efficiently. However, its real-
world applicability remains a point of
consideration.

Load Balancing Techniques (Saif et al.,
2023; Zhang et al., 2021; Phalak, 2023;
Selvakumar, 2020): In the domain of load
balancing, various techniques like CSO-
ILB, OSMC, and BAPSO offer different
advantages, including scalability, cost-
efficiency, and real-time adaptability.

4. Conclusion

In conclusion, dynamic resource allocation
and load balancing are paramount in multi-
cloud environments, where organizations
strive to optimize resource utilization and
enhance performance while managing costs.
This research paper has reviewed and
evaluated current research on this topic,
emphasizing its critical relevance in the
realm of cloud computing.

The analysis of real-world validity
demonstrates the potential benefits and
challenges associated with existing tools and
strategies. While they offer valuable
capabilities, integration complexities and
practical considerations must be addressed.
As organizations continue to embrace multi-
cloud strategies, the development and
refinement of dynamic resource allocation
and load balancing solutions remain
essential.

This paper underscores the importance of
tailored multi-cloud solutions and offers
insights into how organizations can harness
the benefits of dynamic resource allocation
and load balancing while efficiently
managing their multi-cloud environments.
The future of cloud computing relies on the
ability to adapt to evolving workloads,
optimize resource usage, and ensure cost-
effective, high-performance operations.

REFERENCES

Adewojo, A.A. and Bass, J.M. (2022) ‘Multi-
cloud Load Distribution for Three-tier
Applications’, [International Conference on
Cloud Computing and Services Science,
CLOSER - Proceedings, pp. 296-304. Available
at: https://doi.org/10.5220/0011092100003200.

Alam, A.B.M.B., Fadlullah, Z.M.D. and
Choudhury, S. (2021) ‘A Resource Allocation
Model Based on Trust Evaluation in Multi-
Cloud Environments’, /EEE Access, -9, pp-
105577-105587. Available at:
https://doi.org/10.1109/ACCESS.2021.3100316

Alyas, T. et al. (2023) ‘Optimizing Resource
Allocation Framework for Multi-Cloud
Environment’, Computers, Materials = and
Continua, 75(2), pp. 4119—4136. Available at:
https://doi.org/10.32604/cmc.2023.033916.

Chen, X. (2023) ‘Multi-objective optimization
task scheduling method based on dynamic
programming for multi-cloud environment’,
2023 4th International Conference on
Information Science, Parallel and Distributed
Systems (ISPDS), pp. 278-283. Available at:
https://doi.org/10.1109/ISPDS58840.2023.1023
5565.

Phalak, C. (2023) ‘mSIRM : Cost-Efficient and
SLO-aware ML Load Balancing on Fog and
Multi-Cloud Network’, pp. 19-26. Available at:
https://doi.org/10.1145/3589013.3596676.

Rodigari, S. et al. (2021) ‘Performance Analysis
of Zero-Trust multi-cloud’, /EEE International
Conference on Cloud Computing, CLOUD,
2021-Septe, pp. 730-732. Available at:
https://doi.org/10.1109/CLOUDS53861.2021.00
097.

Saif, M.AN. et al. (2023) CSO-ILB: chicken

61

TTIC, Vol.8, 2024

swarm optimized inter-cloud load balancer for
elastic containerized multi-cloud environment,
Journal of Supercomputing. Springer US.
Available at: https://doi.org/10.1007/s11227-
022-04688-w.

Saxena, D., Gupta, R. and Singh, A.K. (2021) ‘A
Survey and Comparative Study on Multi-Cloud
Architectures: Emerging Issues And Challenges

For Cloud Federation’. Available at:
http://arxiv.org/abs/2108.12831.
Selvakumar, S. (2020) ‘Enhanced Neural

Network Scheduling For Load Balancing In
Multi-Cloud’, Journal On Data Science And
Machine Learning, Volume: 01(June), pp. 77—
80.

Selvapandian, D. and Santhosh, R. (2022) ‘A
Hybrid Optimized Resource Allocation Model
for Multi-Cloud Environment Using Bat and
Particle Swarm Optimization Algorithms’,
Computer Assisted Methods in Engineering and
Science, 29(1-2), pp. 87-103. Available at:
https://doi.org/10.24423/cames.405.

Zhang, B. et al. (2021) ‘A novel cooperative
resource provisioning strategy for Multi-Cloud
load balancing’, ‘Journal of Parallel and
Distributed Computing, 152, pp. 98-107.
Available at:
https://doi.org/10.1016/j.jpdc.2021.02.003.

	I. Dynamic Allocation
	II. Load Balancing Techniques

