TTIC, Vol.8, 2024

Robust Background Subtraction in Traffic
Environments

Mehul Patel
mehul_242000@yahoo.com

Abstract—This paper introduces a method for robust back-
ground subtraction suitable for continuous 24-hour video surveil-
lance in traffic environments. The technique aims to function in
real-time, withstand varying weather conditions, and maintain
the detection of foreground objects for extended periods. The
primary application is a monitoring system for highway safety,
capable of detecting events like wrong-way driving, accidents, or
pedestrians on the road. The method is based on the Pixel-Based
Adaptive Segmenter (PBAS), which models the background using
a history of recent pixel values and dynamically adjusts decision
thresholds and learning parameters. The algorithm is fine-tuned
to ensure robust performance under diverse conditions.

INTRODUCTION

Background subtraction and foreground detection are the
basic tasks of many real application systems, such as surveil-
lance systems, autonomous vehicles, and semantic image
analysis. Background subtraction consists of classifying every
pixel belonging to a video sequence frame as foreground or
background. In synthesis, the algorithm takes as input a video
and outputs a binary mask, where 1s are foreground pixels, and
Os are background pixels. I restricted our domain to traffic
monitoring; in particular, this work should set the basis for
an automated tool to identify cars and detect anomalies in
highways and roads 24/24h (e.g., car accidents, traffic jam,
wrong-direction driving) using a standard RGB stationary
camera. Critical aspects that must be taken into account while
developing such an algorithm are a lot, first of all, variable
and bad weather conditions and illumination changes. In fact,
it is very hard to distinguish moving objects in the presence
of heavy rain, fog, or snow. Also, during the night, the
environmental situation varies a lot from day to day, and our
algorithm has to adapt continuously due to these facts. Another
problem that I faced was intermittent object motion. Here, the
challenge is to correctly detect an initially stationary object
that begins to move or when an object that is static starts
moving again. I fine-tuned some parameters to make sure that
a moving car that stops after a while will be classified as
foreground for a long time before turning into background. In
contrast, the opposite event (from static to moving) is easier
to handle. The entire algorithm has been implemented in C++
since compiled code performances are fundamental to allowing
the system to work in real time. In [3], I can find an integration
of the basic algorithm in an FPGA device, which exploits
hardware implementation to reduce a lot of the computational
time.

RELATED WORK

Over the new past, a huge number of calculations and
strategies for foundation displaying have been created. One of
the most unmistakable and most broadly utilized techniques
is those in light of Gaussian Combination Models (GMM)
[1]: every pixel is demonstrated as a combination of weighted
Gaussian circulations. Pixels that are distinguished as foun-
dation are utilized to work on the Gaussian combinations by
an iterative update rule. Another significant non-parametric
technique is the Energy [2]. Every pixel behind the scenes
model is characterized by a background marked by the N’s
latest picture pixel values, and an irregular plan is utilized
to refresh them. Besides, refreshed pixels can “diffuse” their
ongoing pixel esteem into adjoining pixels utilizing another
arbitrary determination strategy. The first plan is basically
the same as the methodology followed by the PBAS [4]
calculation. It very well may be ordered as a non-parametric
technique since it involves a past filled with N picture values
as the foundation model and uses an irregular update rule
like the one utilized by the Energy calculation. Be that as
it may, in Energy, the haphazardness boundaries, as well as
the choice limit, are fixed for all pixels. Conversely, in the
PBAS calculation, these qualities are not treated as boundaries
but rather as versatile state factors, which can progressively
change over the long haul for every pixel independently.

PROPOSED APPROACH

Initially, I studied the PBAS algorithm as I originally
thought: how it works and how the hyperparameters change
its behavior. Then, I implemented it very efficiently using C++
and further analyzed the quality of this first basic version. This
shed light on some improvements for important aspects, as |
see in the following sections. In the end, I have chosen the
parameters that achieved the best performance in our scenario.

A. PBAS algorithm

This part depicts the Pixel-Based Versatile Segmenter,
which follows a non-parametric worldview. In this manner,
each pixel z; is demonstrated by a variety of as of late noticed
foundation values. The technique comprises of a few parts,
which are portrayed as a state machine in Figure 1. As a
focal part, the choice block chooses possibly in support of
the forefront in light of the ongoing picture and a foundation
model B(z;). This choice depends on the per-pixel limit
R(z;). Additionally, the foundation model must be refreshed
over the long haul to take into account steady foundation

changes. In the model, this update relies upon a for each pixel
learning boundary T'(z;).

The background model B(z;)anarrayofNdefines re-
cently observed pixel values:

B(z;) = {Bi(xi), ..., Bi(x:), ..., By (%)} ey

A pixel z; is chosen to have a place with the foundation in the

event that its pixel esteem I (z;) is nearer than a specific choice

edge R(z;) to essentially K of the N foundation values. In this

way, the closer view division cover is determined as follows:

F(z;) ={1,&#{dist(I(z;), Bp(z;)) < R(x;)} < K0&else

2
F =1 infers closer view. The choice includes two boundaries:
the distance limit R(x;), which is characterized for every pixel
independently and which can change progressively, and the
base number K, which is a proper worldwide boundary. The
capability dist is a distance measure, as made sense of in
condition (3).

a) Update B: The foundation model is just refreshed for
those pixels that are right now foundation (i.e., F'(z;) = 0).
Refreshing intends that for a specific file & € {1...N'} (picked
consistently at irregular), the relating foundation model worth
By, (z;) is supplanted by the ongoing pixel esteem I(x;). This
permits the ongoing pixel worth to be “learned” away from
plain sight model. This update, nonetheless, is just performed
with likelihood p = 1/T'(x;). Generally no update is done by
any means. Subsequently, the boundary T'(x;) characterizes
the update rate. The higher T'(z;), the more outlandish a pixel
will be refreshed. It is likewise refreshed (with likelihood p =
1/T(x;)) a haphazardly picked adjoining pixel y; € N(z;)
Consequently, the foundation model By(y;) at this adjoining
pixel is supplanted by its ongoing pixel esteem V (y;).

b) Update R: To change the choice edge R(z;), a variety
of as of late noticed pixel values behind the scenes model
B(z;) is saved. I additionally make an exhibit D(z;) =
{D1(x;),..., Dn(x;)} of negligible choice distances. When-
ever an update of Bj(x;) is done, the presently noticed
insignificant distance:

dmin(v:) = ming{dist(I(x;), Bi(z;))}

is kept in touch with this exhibit: Dy(x;) < dmin(z;).
Subsequently, a past filled with insignificant choice distances
is made.

c) Distance computation: The

dist(I(x;), Br(z;)) is computed as:

quantity

«

- 3)

(I (i) — By (i) + [1°(2s) — By(w)]
where m indicates the gradient magnitude and v the pixel
intensity value. I, is the average gradient magnitude over
the last observed frame. Thus, the fraction I"“L weighs the

importance of pixel values against the gradient magnitude.

TTIC, Vol.8, 2024

EXPERIMENTS

In this section, I first report the results obtained by varying
the main model parameters. I also include the adopted settings
that perform best in our scenario. Then, I show some real-case
usages of the algorithm, comparing different environmental
conditions that I found in 24/24h live videos.

B. Hyperparameters
N

N represents how many matrices are kept in memory to
model the background. Each of them stores the history of
pixel values (so N entries). The greater, the more complex
backgrounds can be handled, but at the cost of heavier
computation.

K

K tells the number of samples from B that have to be
closer than R in order to classify the pixel as background.
The higher, the more difficult it is for a pixel to be classified
as background.

T

The regulator T'(x;) related with every pixel is presented
with changing the learning rate related with every pixel pro-
gressively founded on its arrangement. It gradually increments
when the pixel is named foundation and gradually diminishes
when the pixel is delegated frontal area. That prompts better
closer view recognition because of several factors: in the event
of a profoundly unique foundation (i.e., enormous d,y, (;)),
the learning boundary T'(x;) stays steady or just marginally
changes. For this situation of an exceptionally powerful foun-
dation, the wrongly distinguished closer view won’t stay for
long in light 'of the fact that the likelihood of refreshing
p = 1/T(x;) doesn’t reach zero excessively quick.

In the other ideal instance of a completely static foundation,
a characterization as forefront is very strong, so T'(z;) can be
quickly expanded or diminished.

Tupper> Tiower: control separately the most minimal and the
most elevated likelihood of refreshing a pixel and placing it
behind the scenes model B.

Tine, Tyec: are fixed boundaries and control the update of the
regulator T of each pixel.

Since one of the goals of the work is to have a powerful
grouping of the closer view objects, I need to track down the
best qualities for the T boundaries to such an extent that an
article, assuming delegated forefront, stays for all intents and
purposes for the longest period.

R
Eq (??) is similar to the equation of a pure propor-
tional controller. In this case the R(z,y) has to follow
dminavg ((E, y)Rscale- So:
e Rjpcdec: it can be seen as the propositional constant of
the controller: setting too high can lead to oscillation
around the target and even to divergence. Setting too low

10

TTIC, Vol.8, 2024

Segmentation
) > F(x;
nput image 16x) - Back- / Foreground Decision #)
Update R(x;) < TR(x)—»|
—> Decision Threshold R(x;) fB(x.) "
minkX;
Rinc;‘decT waerf Rsm% Update B(x;)

Y

Update Rate 1/T(x;) 1. Update Pixel x;

Update T(x) 2. Update @ min(x;)
Update Rate T(x;)

—I{XJ_’ Update Rate 1/T(x
[i] Update NeigthI’hOOd y
I
Iir\cl Idecl I Iowerl Iupperl

d min(xi) —‘

Fig. 1: PBAS state machine.

) ik

|A01 km. 369,0 M.S.Savino itine;s 09:40:16 11/01/19

R\S

A\

d / \\\

A01 km. 369,0 M.S.Savino itinere 09:40:16 11/01/19

A01 km. 369,0 M.S.Savino itinere 09:40:16 11/01/19 . A0 km. 369,0 M.S. Savino itinere 09:40:06 11/01/19

(©) N =20 ©)K=4

Fig. 2: T can see the poor mask of the cars on the left road Fig. 3: Setting K" too high brings to classify many pixels as
when N = 2, and the accurate mask of the lines on the front foreground, with the risk of false positives.
right when N = 20.

leads to really few false positives but also decreases true

leads to slow convergence to the target values, making positives; setting too low will increase false positives.

the algorithm too slow to adapt to dynamic backgrounds. o Riower: sets a limit on how much R can decrease its
o Rgcqie: tells how much the algorithm is sensitive; in fact, value. Setting it too low will lead to a lot of false

it is a direct control of the threshold. Setting too high positives, especially in zones that are changing their

11

TTIC, Vol.8, 2024

;ul‘aslrade”ﬁ er litalia

®) Tine =5

Fig. 4: Having a higher T},. means decreasing faster the
probability that a pixel is included in the background model
once it is classified as foreground. This is clearly visible in
the two images reporting a car stopped for 30s.

©) Rscate =50

Fig. 5: As Rgcqie grows, the tree leaves that are waved by the
wind are not detected anymore as foreground, but also a part
of the car is lost.

values of high amounts due to noise. Setting too high
will reduce true positives. So, its value should be based
on video quality more than the application domain.

(o7

From eq (3) I see that « tells how much to weight the
image gradients with respect to the image values in the

(@ a=0

(d a =50

Fig. 6: The influence of the image gradients. In (a), the mask is
reported not considering the gradients (v = 0). Going toward
the bottom, I see a good influence on the detection, but I also
witness an increase in the noise.

distance computation. The image gradients give a good cue
to distinguish the street from the cars (image absolute values
are not, since many cars have almost the same color as the
street). So, alpha should be set high in order to consider this
fact. However, notice that setting too high will lead to noisy
masks, especially with noisy videos that have small variations
of the gradient from frame to frame.

12

Fig. 7: Comparison between output without post-processing
and with median-blur post-processing

C. Post-processing

To refine the algorithm’s performance, a median filter is
applied to the final mask using a square kernel. Since the
values of the pixels can be 0 or 255, this is equivalent to
performing a majority voting among the kernel’s pixels to
decide the value of the middle one. That has been shown to
reduce the noise on the final mask and, in the meanwhile,
generate more connected components (Figure 7). The size
chosen for the kernel after different experiments is 5 x 5.

D. Optimal Setting

The proposed method has a multitude of tunable parameters,
and their values have been chosen, focusing the attention on
having an algorithm robust to changing weather conditions and
capable of identifying foreground objects even if they stay
steady for some time (e.g., cars stop in a traffic light), still
guaranteeing a real-time behavior.

Experimental results have shown that the optimal parameters
are the following:

e N = 30 : The number of components of the Background
model. Increasing the value of this parameter makes the
algorithm more robust to noise but also increases the time
complexity. The value has been chosen considering the
previous tradeoff.

e K = 3 : The number of components that have to be closer
than R(zx;) in order to set the pixel to be background.
I raise it to 3 (instead of 2) because I want to be
stricter in the background classification since cars are
often segmented only near the borders and masks present
holes in the central area, probably because the car color
is matched with some previous background pixels.

o Rinciec = 0.05 : Proportial constant of the controller for
the variable R(z;). The value 0.05 leads to a pretty fast
adaptation to the target value of R(x;) (in more or less
30 frames, the target is reached). Considering that our
target is long periods, there is no reason to raise it.

e Rjower = 18 : Lower bound of the decision threshold. It
has been left to the value proposed in the original paper
since I found that raising it would lead to a significant
decrease in true positives, and lowering it would let too
much noise in. Item Rjcale = 2 : is the scaling factor in
the controller for the decision threshold. Setting it to 2 has
shown that it lets the algorithm recognize the foreground
object better while introducing very low noise.

TTIC, Vol.8, 2024

e Tyee = 0.05 : If x; is background, Ty.. is the rate at
which T'(x;) is decreased.

o Tine =5 : If x; is foreground, T}, is the rate at which
T'(x;) is increased. These parameters have been shown to
be very important in being classified as foreground pixels
associated with objects that have stopped their movement.
Increasing it to 5 from the proposed value of 2 reduces
the probability of putting a steady foreground object into
one of the N components of the background model faster.

e Tiower = 2 : Lower bound of T'(x;).

o Typper = 200 : Upper bound of T'(z;).

o « = 20 : Weight to give to image gradients. The proposed
value is high because this shows to be a good cue for
distinguishing car objects.

E. Long Period Experiments

Since our goal is traffic monitoring 24/7, it is important to
ensure that the algorithm can adapt as time passes to different
light conditions, environmental changes, and traffic intensity
variations. In order to do this, I let the algorithm run on ninety-
minute long videos recording smooth, light transitions (from
day to night and vice versa), rough changes in environmental
conditions, and variations in traffic intensity. Experiments
show that the algorithm adapts without any problem in those
scenarios. This makes us believe that also, in a real 24/7
scenario, there wouldn’t be any adaptation problems. However,
this behavior is better than expected: looking at how the PBAS
works, I can notice that the state (that is, the values of the
variables) would change in the same way during the starting
iterations as it would after one day of non-stop run.

IMPROVEMENTS
RGB vs Grey

T'have experimented with a version of the algorithm working
just on grey scale images and with one exploiting also color
informations. The grey one is implementing exactly all the
steps described in -A. The RGB version runs the greyscale
version for each of the three channels in parallel threads, and
then the final mask is computed as the logical OR of the
three masks obtained from the three channels. Experiments
show that the RGB version has slightly better car detection
capabilities but is obviously computationally heavier. I could
not try it with a 4-core CPU, but in theory, this can bring
times down to the grayscale version since the 3 channels can
be computed quickly, exploiting parallelism.

Optical flow analysis

The algorithm is fully based on the variations of a pixel
intensity over time. This cannot be enough in some situations
to provide a correct segmentation; for example, I noticed that
a traffic light is classified as a foreground element because it
emits three different light colors that vary a lot from each other
and very quickly from frame to frame (this problem has a more
evident impact especially when using 3-channels videos). I can
resort to optical flow to detect this kind of issue: in fact, optical
flow provides a measure of the motion of pixels in consecutive

13

TTIC, Vol.8, 2024

(c) 00:45:00

(e) 01:29:30

Fig. 8: It is shown how the algorithm adapts to changes in
lighting conditions, in particular when the sun sets.

frames, so in the previous case, the flow of pixels in the area
of the traffic light will not be present. So, I can discriminate
pixels that have flow and pixels that do not, changing different
parameters of the PBAS for these two categories.

I built a model to determine which pixels had an “active”
flow in the past, and in some sense, these pixels represent
broad areas subject to traffic. I adopted the Farneback dense
optical flow algorithm to get the flow of each pixel of the
frame. Then, I checked which pixels had a flow magnitude
over a certain threshold W,,;,,, and I stored this information
in a history of L previous samples. If the magnitude of the flow
was greater than W,,,;,, for L consecutive frames, then the pixel
is classified as “flow-active.” For all the “flow-active” pixels, I
applied some ad-hoc adjustments for the PBAS parameters, in
particular I decremented the update frequency 7" by a constant

(d) 01:04:00

(e) 01:29:00

Fig. 9: It shows how the algorithm adapts to changes in envi-
ronmental conditions. In this case, it starts snowing; therefore,
the road gets dirtier than it was when the video started.

to penalyze the chances of those pixels to be inserted in the
background model. Further changes can be made; however,
they are out of this project’s scope.

Improvements and computational impact

I report here the time (in ms) required to analyze one frame
using our implementation of the PBAS algorithm, with and
without the proposed improvements. The algorithm was run
on a Macbook Pro, mounted on an Intel Core 15 2.3 GHz and
8 GB 2133MHz of LPDDR3 RAM, using 426x240 frames as
input. Performances can drastically be raised by running it on
a 4-core CPU (that is able to handle the three threads of the
RBG channels in parallel) or on a GPU.

14

TTIC, Vol.8, 2024

(a) 00:06:00 (a) Grey

(b) RGB

oy

(c) Gray and RBG on intermittent motion video

Fig. 11: Comparison between grayscale and RBG versions of
the PBAS. As I see, there are some differences in the detection
accuracy. In good light situations, e.g., sunny days, the RGB
version provides better foreground masks and less noise.

(e) 01:23:00

Fig. 10: It shows how the algorithm adapts to changes in
lighting and traffic conditions during a one-hour and 30-minute
video sample.

Algorithm | Average time
PBAS on grayscale video 90ms
PBAS on RBG video 180ms
PBAS on RBG video with optical flow 200ms
CONCLUSION

(b) Optical flow

I have provided a background subtraction system based on
the PBAS algorithm. The system is meant to work in real- Fig. 12: Optical flow version compared with the naive version.
time in traffic surveillance scenarios, also under challenging The former one is aware of areas that have an “active flow”
environmental conditions and heavy traffic, 24/7. In order to and puts those pixels in the background model less frequently,
do this, the general-purpose PBAS algorithm was studied, e.g., the traffic light on the right.
and the hyperparameters were adapted to perform best in
this particular scenario. I have validated our work by visual
inspection in specific and challenging situations, with long time. I further experimented with noise removal methods, and I
videos with environmental and traffic conditions changing over tried to exploit motion information. Future work can be done in

15

this direction until a precise classification of noise and errors in
the mask is detected. Still, the system can now be employed as
a preprocessing step for many anomaly detection applications,
such as car accidents, cars going in the wrong direction, and
people crossing the road.

(1]

(2]

[3]

(4]

REFERENCES

C. Stauffer and W. Grimson. Adaptive background mixture models
for real-time tracking. In Computer Vision and Pattern Recognition,
1999. IEEE Computer Society Conference on., volume 2, pages 2 vol.
(xxi1i+637+663), 1999.

O. Barnich and M. Van Droogenbroeck. Vibe: A universal background
subtraction algorithm for video sequences. Im- age Processing, IEEE
Transactions on, 20(6):1709 —1724, june 2011.

T. Kryjak, M. Komorkiewicz and M. Gorgon. Real-time Foreground
Object Detection Combining the PBAS Background Modelling Algorithm
and Feedback from Scene Analysis Module. INTL Journal of Electronics
and Telecommunications, 2014, VOL. 60, NO. 1, PP. 61-72

M. Hofmann, P. Tiefenbacher and G. Rigoll, “Background segmen-
tation with feedback: The Pixel-Based Adaptive Segmenter,” 2012
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition Workshops, Providence, RI, 2012, pp. 38-43. doi:
10.1109/CVPRW.2012.6238925

16

TTIC, Vol.8, 2024

