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Abstract—The significant wave height (SWH) data 

variability is studied for the Bay of Bengal region for the 

period 1996-2000 using continuous wavelet power spectrum. 

The averaged SWH time series were normalized by their 

standard deviation and then decomposed using the Morlet 

wavelet function. The normalized wavelet power spectrum are 

generated with the cone of influence, where edge effects 

become important. The 95% confidence level for the SWH 

data is shown by the black contours. For a red-noise process 

the significance levels were computed with a lag-1 coefficient of 

0.99. For white-noise process similar contours were generated 

with a lag-1 coefficient of 0.00 since they are uncorrelated in 

time. For the year 1996 the red-noise wavelet power spectrum 

shows two bands of oscillations, one in the 5-20 days period 

and the other one in the 32-64 days period. Except for the year 

2000 the maximum power is concentrated in the June-August 

months for the 32-64 day period. Inspite of the above fact 

significant region is noted only in the year 1996 for the 32-64 

day period. Hence the red-noise wavelet power spectra 

effectively captures the oscillations in the SWH data which 

corresponds to seasonal variations. 

Keywords—Time series, fourier transform, wavelet power 

spectrum, significant wave height, Bay of Bengal. 

I. INTRODUCTION  

A wavelet can be defined as a wave like oscillation that 
develops from zero amplitude and then reaches a maximum 
value and then finally decreases back to zero amplitude. A 
wavelet has an oscillation period, a maximum point and a 
scale such that it amplifies and declines and are used in 
various fields like signal analysis, image processing and data 
compression. In the 1980’s wavelet analysis developed in 
mathematical studies and then applied in geophysics in the 
next decade. Raw signals may contain information that are 
easily not available and thus mathematical transformations 
are used to extract more information. Primarily the signals 
are time domain ones and thus are functions of time. On 
plotting these signals one obtains a time and amplitude graph 
of the given signal. For most of the signal processing studies 
and applications, such graphs may not represent the signal 
appropriately. The frequency part of the signal may contain 
important information which remain hidden. If the Fourier 
Transform of the signal is performed in the time domain one 
obtains a frequency and amplitude graph of the given signal. 

The Fourier transform acts as a powerful tool to evaluate 
the frequency content of a given signal. For the Fourier 
transform if the entire time axis is considered, the 
information for the rise of a particular frequency is lost. 
Instead short time Fourier transform can be used which uses 
a sliding window to find the spectrogram. Although this 

gives information of time and frequency both, due to the 
length of window the resolution of the frequency gets 
limited. However the problem can be solved using wavelet 
transform which are based on small wavelets having limited 
duration.  

In 1909, the mathematician AlfrdHaar mentioned wavelet 
transform for the first time in literature in the form of Haar 
wavelet. At that time the definition of wavelets were not 
known and it was geophysicist Jean Morlet in 1981 who 
gave the idea. The term wavelet was invented in 1984 by 
Morlet and Alex Grossman. The only known orthogonal 
wavelet was the Haar wavelet till in 1985,Yves Meyer 
formed the second orthogonal wavelet known as the Meyer 
wavelet. Stephane Mallat and Meyer gave the idea of 
multiresolution in 1988 and Ingrid Daubechies constructed 
orthogonal wavelet having compact support in the same year. 
Mallat proposed a fast wavelet transform in 1989 which had 
applications in the field of signal processing. 

The wavelet transform has been used in various studies 
which includes the El Niño–Southern Oscillation [1, 2] and 
the turbulent flows [3]. Reference [4] used orthogonal (Haar) 
and continuous (Morlet) wavelet transform on synthetic and 
real data. There are studies related to atmospheric cold fronts 
[5] in which wavelet transform proved to be superior 
compared to other transform methods. Trends in temperature 
data from 1659 to 1990 have been studied using wavelet 
analysis [6]. Reference [7] shows the usefulness of the 
wavelet transform by studying the dispersion of the Yanai 
waves. In comparison to Fourier transform, developments 
due to wavelet transform are discussed in analyzing phase 
relations, as wind generated wave grows and wave breaks 
[8]. Reference [9] gives the theoretical aspect of the wavelet 
analysis while [10] describes the geophysical applications. 
Reference [11] introduces wavelet analysis comprehensively 
but avoided the issue of statistical significance. 

Spectral analysis is a mechanism that can extract 
embedded features in a time series. In particular, Fourier 
analysis has been used extensively by researchers for 
extracting deterministic structures from time series but is 
incapable of detecting non stationary features often present 
in geophysical time series. Using wavelet analysis short term 
characteristics embedded in time series can be extracted. The 
wavelet power spectrum being a function of time and period 
represents the variance or power of a time series. After the 
pioneering work by[12], wavelet analysis has been widely 
used to analyze geophysical time series data like the North 
Atlantic Oscillation indices [13], Arctic Oscillation time 
series data [14], Pacific Decadal Oscillation time series data 
[15, 16], El Niño–Southern Oscillation [17], Pacific–North 
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American pattern, and west Pacific pattern [18]. Wavelet 
coherence and cross-wavelet analyses [19] have been 
performed and shown more useful for analyzing geophysical 
time series data [14, 18, 19, 20].Irregular waves are often 
described by a spectrum that indicates the amount of wave 
energy at different wave frequencies. Significant wave height 
estimates are having a wide application in coastal and 
offshore engineering studies. For ocean wave energy studies 
the spatial variation of the significant wave height data is 
crucial. Thus, estimation and analysis of significant wave 
height is important. Reference [21] assess the influence of 
monsoon variability on the surface waves using continuous 
wavelet transform. The continuous wavelet power spectra of 
half-hour significant wave height (SWH) during monsoon in 
different years present two bands of oscillations: one in the 
8–16-day band and the other one in the 4–8-day band. 

In the present work continuous wavelet power spectra are 
generated using six hourly averaged significant wave height 
time series data over Bay of Bengal (BOB) for the years 
1996 to 2000. Significance levels were determined for both 
white-noise and red-noise processes along with computed 
lag-1 auto correlations. 

II. DATA 

ERA-40 analyzed ocean wave dataset of the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
from 1996 to 2000 forthe Bay of Bengal (BOB) region (78E 
to 98E and 25N to 5N) was used to study the significant 
wave height (SWH) variability. The spatial resolution of the 
dataset is one degree by one degree and the temporal 
resolution is six hours. Averaged over the BOB region SWH 
time series (N = 1460) were generated for the years 1996 to 
2000 separately for wavelet analysis. 

III. METHODOLOGY 

A time series can be estimated using wavelet transform 
which contain for different frequencies nonstationary power 
(Daubechies 1990).Let there be a time series, xn, with equal 
time spacing Δt and n = 0 … N – 1 and a wavelet function 
ψ0(t), that depends on a nondimensional time parameter t. 
For the function to be a wavelet, it must have zero mean and 
be localized in time and frequency space [3].The 
Morletwavelet is an example given by 

2/4/1
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2
0)( tti

eet 
 , where ω0is the nondimensional 

frequency. In this case ω0 is 6 so that the function is a 
wavelet function [3].Reference [12] demonstrated the 
wavelet given below 

 

Figure: Morlet wavelet basis 

 

The left hand plot shows the real part given by the solid 
line and the imaginary part given by the dashed line, of the 
wavelet in the time domain and the right hand plot gives the 

same in the frequency domain. The scale chosen in this case 
was s = 10Δt.Generally the term wavelet function is referred 
to orthogonal or nonorthogonal wavelets while the term 
wavelet basis is used for orthogonal functions. The use of an 
orthogonal basis implies the use of the discrete wavelet 
transform, while a nonorthogonal wavelet function can be 
used with either the discrete or the continuous wavelet 
transform [3]. With respect to the work discussed in this 
paper only the continuous wavelet transform has been 
utilized. 

The continuous wavelet transform of the time seriesxn 
given below, can be stated as the convolution of xnalong with 
a scaled and translated version of ψ0(t) 
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such thatthe (*) indicates the complex conjugate. The 
wavelet scale s can be varied and translated along the time 
index n to show how the amplitude varies with both the scale 
and the time. Since ψ has been normalized the subscript 0 on 
ψ in the expression above is not used. From the above 
expression although the wavelet transform can be calculated, 
it is much faster when the Fourier space is considered. 

The wavelet function ψ(t) being a complex function 
makes the corresponding wavelet transform Wn(s) also a 
complex function. Thus thetransform can be represented 
having real and imaginary parts. One can define the wavelet 

power spectrum as
2

n (s)W .To compare easily different 

wavelet power spectra a common normalization is required 
for the wavelet spectrum. For a white-noise process, the 

expected value for the wavelet transform is
2

n (s)W = σ2, for 

all n and s, and where σ2 is the variance.  

Figure 2b given in the next section shows the normalized 

wavelet power spectrum, 22

n /(s)W   for the averaged SWH 

time series. Due to the normalization by 1/σ2one obtains a 
measure of the power with respect to the white noise. In 
Figure 2b, most of the power is concentrated during June-
August in the 32-64 day band. 

Although there are several factors which should be 
considered while performing a wavelet analysis, generally an 
arbitrary wavelet function, ψ0(t) is chosen. Some of the 
factors to be considered are discussed below. 

(i) Orthogonal or nonorthogonal: 

Wavelet analysis which are orthogonal has at each scale 
the number of convolutions to be proportional to the wavelet 
basis width at the same scale. Thus wavelet spectrum with 
discrete sections of wavelet power is produced and these are 
useful for representing signals. For time series analysis it is 
unlucky that a different wavelet spectrum is produced due to 
the aperiodic shift that occurs in the time series. For a 
nonorthogonal analysis which are less capable at high scales, 
the wavelet spectrum is largely correlated at adjacent times. 
For time series analysis having smooth and continuous 
variations in wavelet amplitude the nonorthogonal transform 
is more appropriate.  

(ii) Complex or real: 
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Wavelet functions which are complex gives information 
regarding amplitude and phase. They are better utilized for 
functions having oscillatory features. As for the case of a real 
wavelet function, it gives information for a single component 
only and are used to isolate peaks or discontinuities.  

(iii) Shape: 

For time series analysis a wavelet function gives the 
features contained in the time series. Those time series 
having jumps or steps a Haar function maybe chosen and 
those varying smoothly a damped cosine function which is 
smooth is chosen. For the case of wavelet power spectra, the 
choice of wavelet function is simpler as it gives similar 
results. As for complex and nonorthogonal wavelet analysis 
the Morlet and Paul wavelets are considered. Haar and 
Daubechies, are orthogonal wavelet functions used widely[4, 
22, 23]. 

For a wavelet functionthe proportion of the width in real 
and the Fourier spaces gives the resolution of the function. If 
the function is narrow in time it will have good time 
resolution although poor frequency resolution. Reverse 
occurs to a broad function.  

After choosing a wavelet function comes the requirement 
to define the scales to be used for the wavelet transform. For 
orthogonal analysis the discrete set of scales described by [3] 
is used. For the nonorthogonal case an arbitrary set of scales 
can be used as per requirement. The scales can be written as 
fractional powers of two as given below 

Jjss jj

j ...,,1,0,20  
 

 02

1 /log stNjJ  
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In the above equations s0 is the smallest resolvable scale and 
J is the largest scale. The s0 should be chosen so that the 
equivalent Fourier period is approximately 2Δt. The choice 
of a sufficiently small Δj depends on the width in spectral 
space of the wavelet function. Considering a Morlet wavelet, 
a Δj of about 0.5 is the largest value that still gives adequate 
sampling in scale. For the other wavelet functions, a larger 
value can be used. With smaller values of Δj finer resolutions 
are obtained. 

In Figure 2b, N = 1460, Δt = 1/4 day, s0 = 4Δt, Δj = 
0.125, and J = 56, giving a total of 57 scales ranging from 1 
day up to 128 days. This value of Δj appears adequate to 
provide a smooth picture of wavelet power.       

The time series used here are having finite length. Thus 
at the beginning and end of the wavelet power spectrum 
there are errors. This can be corrected by using zeroes at the 
end of the time series and after wavelet transform removing 
them. In the present study the time series is added with 
zeroes to limit the edge effects and fasten the transform. The 
cone of influence (COI) is the region within the wavelet 
spectrum in which edge effects are considered.At each scale 
the COI is defined as the e-folding time as far as the auto 
correlation of the wavelet power is considered. The 
decorrelation time is measured using the size of the COI at 
each scale, whenever there is a spike in the time series. 

To determine significance levels for a wavelet spectra, 
one first needs to choose an appropriate background 
spectrum. It is then assumed that different realizations of the 
geophysical process will be randomly distributed about this 

mean or expected background, and the actual spectrum can 
be compared against this random distribution. For most of 
the geophysical occurrences, an appropriate background 
spectrum can be either white noise with a flat Fourier 
spectrum or red noise having increasing power with 
decreasing frequency. A previous study by [24] derived the 
mean and variance of the local wavelet power spectrum. In 
this work, the theoretical white and red noise wavelet power 
spectra are derived and compared.  

Geophysical time series data can be modeled using either 
white noise or red noise spectra. A simple model for red 
noise is the univariate lag-1 autoregressive process given by  

nnn wxx  1  

such that α is the assumed lag-1 auto correlation, x0 = 0, and 
wn is taken from Gaussian white noise. 

The discrete Fourier power spectrum of the above after 
normalizing[25] is 
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Where k = 0 … N/2 is the frequency index. The relation can 
be used to model a red-noise spectrumby selecting an 
appropriate lag-1 auto correlation. By setting α = 0 in the 
above equation a white-noise spectrum is obtained. 

For a white noise spectrum the mean is zero, the variance 
constant and it is uncorrelated in time. For all frequencies the 
white noise power spectrum is uniformly spread across. A 
red noise spectrum is serially correlated in time having zero 
mean and constant variance. It is such that the correlation 
coefficient lies between 0 and 1 for the lag-1 auto correlation 
between two successive time samples. This red-noise was 

estimated from (α1+ √α2) /2, where α1 and α2 are the lag-1 

and lag-2 auto correlations of the averaged SWH.  

The null hypothesis is defined for the wavelet power 
spectrum as follows:  

Let us say that the time series has a mean power 
spectrum. If the wavelet power spectrum has a peak that is 
significantly higher than the background spectrum, then for a 
certain percent confidence the peak is assumed to be a true 
feature. Significant at the 5% level is equivalent to the 95% 
confidence level, and implies a test against a certain 
background level. Again 95% confidence interval refers to 
the range of confidence about a given value.The 95% 
confidence level for the SWH data is shown by the black 
contours. During May-August of the year 1996 there is a 
continuous significant region in the 32-64 days period (figure 
2b). The 95% confidence implies that 5% of the wavelet 
power should be above this level. 

IV. RESULTS AND DISCUSSIONS  

SWH data have been downloaded for the BOB region 
from the ECMWF analyzed ERA-40 global ocean datasets 
from 1996 to 2000. It has spatial resolution one degree by 
one degree and temporal resolution six hours. The BOB 
region extends from 78E to 98E longitude and 25N to 5N 
latitude. For each year separately averaged SWH time-series 
were generated where N = 1460. 
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The time-series were standardized by their standard 
deviation and then decomposed using the Morlet wavelet 
function. The normalized wavelet power spectrum are 
generated with the cone of influence, where edge effects 
become important. Anything below it is taken to be doubtful. 
The black contour encloses regions of greater than 95% 
confidence for a red-noise process with a lag-1 coefficient of 
0.99. For white-noise process similar contours were 
generated with a lag-1 coefficient of 0.00 since they are 
uncorrelated in time. 

Fig 1a gives the time-series plot of averaged BOB SWH 
for the year1996 with an annual mean SWH of 0.99 m, 
minimum and maximum wave height of 0.56 m and 2.03 m 
respectively. The x-axis represents time in days and y-axis 
SWH in meter. The peaks are observed during the months of 
June, July and August during the southwest monsoon season 
when the region is under the influence of strong local winds.   

Fig 1b gives a sharp peak of 2.16 m in the month of May 
for the year 1997. The mean wave height is approximately 1 
meter but higher values spread over a longer period, from 
May to August. Fig 1c represents the year 1998 with mean 
0.99 m and maximum value of 1.66 m. High magnitudes 
prevails from June to September. Fig 1d and fig 1e represents 
the year 1999 and 2000 with mean wave heights 1.05 m and 
1.04 m respectively. Both having a maximum of 1.8 m, with 
higher waves during the southwest monsoon season. Thus 
we can say the averaged SWH time-series data show 
oscillations with periods 30-100 days. 

 

Fig. 1a. Time-series of averaged BOB SWH for 1996 

 

 

Fig. 1b. Time-series of averaged BOB SWH for 1997 

 

Fig. 1c. Time-series of averaged BOB SWH for 1998 

 

 

Fig. 1d. Time-series of averaged BOB SWH for 1999 

 

 

Fig. 1e. Time-series of averaged BOB SWH for 2000 

 

The wavelet transforms identifies the localized 
intermittent periodicities in a time series which are expanded 
using the transform into time frequency space. A time series 
is represented using continuous wavelet transform into a time 
frequency space such that the oscillations having different 
periods are observed. The continuous wavelet power spectra 
of six-hourly SWH in different years are presented below. 
Fig 2a gives the averaged BOB SWH time-series data for 
1996 normalized by standard deviation. The pattern is same 
as fig 1a but with different y-axis limits.  

Fig 2b and fig 2c are the contour plots showing the 
magnitude of the wavelet power spectrum of the normalized 
time-series. The x-axis is the wavelet location in time and the 
y-axis (logarithmic scale) is the wavelet period in days. The 
black contours are the 95% confidence level with respect to 
red and white noise. The region below the black curve is the 
‘cone of influence’, where edge effects limit the ability to 
interpret the results. The colour bar represents the power. For 
the red-noise process in fig 2b large power occur during the 
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5-20 day and 32-64 day period. During June, July August 
there are two oscillations, one in the 5-20 day band and the 
other one in the 32-64 day band. Among these two bands, the 
energy in 32-64 day band was continuous and throughout the 
time-series. For the 5-20 day band there are isolated 
significant regions only. Fig 2c has a power spectrum for the 
white-noise process which has black contours spread across 
denoting no significant regions. 

Fig 3a, 3b, 3c gives similar plots for 1997. The red-noise 
power spectrum (fig 3b) shows two bands of oscillations like 
1996 but there is no significant region during July-August.  
Time-series and contour plots in figures 4, 5 and 6 represents 
the years 1998, 1999 and 2000.  For the year 1998, the 
wavelet power spectrum (fig 4b) shows a small significant 
region during June-July at a period of 32 day. From April 
onwards there are significant regions in the 8-16 day period. 
The red-noise power spectrum (fig 5b) of 1999 shows 
continuous large power in the 32-64 day band like 1996 but 
there is no significant contour at the 95% confidence level. 
Fig 6b of the year 2000 shows significant regions only at the 
8-16 day period. The regions represents the peak of the time 
series. 

 

Fig. 2a. Averaged BOB SWH time-series data for 1996 normalized by 
standard deviation. 

 

 

Fig. 2b. The local wavelet power spectrum for 1996 using the Morlet 
wavelet. The black contours are the 5% significance regions, using a red-
noise background spectrum. 

 

Fig. 2c. Same as figure 2b except for white-noise background spectrum. 

 

 

Fig. 3a. Averaged BOB SWH time series data for 1997 normalized by 
standard deviation 

 

 

Fig. 3b. The local wavelet power spectrum for 1997 using the Morlet 
wavelet. The black contours are the 5% significance regions, using a red-
noise background spectrum. 

 

 

Fig. 3c. Same as figure 2b except for white-noise background spectrum. 
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Fig. 4a. Averaged BOB SWH time series data for 1998 normalized by 
standard deviation 

 

 

Fig. 4b. The local wavelet power spectrum for 1998 using the Morlet 
wavelet. The black contours are the 5% significance regions, using a red-
noise background spectrum. 

 

 

Fig. 4c. Same as figure 2b except for white-noise background spectrum. 

 

 

Fig. 5a. Averaged BOB SWH time-series data for 1999 normalized by 
standard deviation 

 

 

Fig. 5b. The local wavelet power spectrum for 1999 using the Morlet 
wavelet. The black contours are the 5% significance regions, using a red-
noise background spectrum. 

 

 

Fig. 5c. Same as figure 2b except for white-noise background spectrum. 

 

 

Fig. 6a. Averaged BOB SWH time-series data for 2000 normalized by 
standard deviation. 

 

 

Fig. 6b. The local wavelet power spectrum for 2000 using the Morlet 
wavelet. The black contours are the 5% significance regions, using a red-
noise background spectrum. 
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Fig. 6c. Same as figure 2b except for white-noise background spectrum. 

 

V. CONCLUSIONS 

For the BOB region averaged SWH time series data are 
decomposed using the Morlet wavelet function. Continuous 
wavelet power spectra are generated for the years 1996 to 
2000. Confidence levels are determined for both white-noise 
and red-noise processes along with computed lag-1 auto 
correlations. During June, July August there are two 
oscillations, one in the 5-20 day band and the other one in the 
32-64 day band for the year 1996. For the red-noise process 
large power can be seen during the above periods. In 1997 
there is no significant region during July-August for the red-
noise power spectrum. In 1998 there is an extended region in 
the 8-16day band from July to October. The year 1999 shows 
continuous significant region in the 32-64 day period similar 
to 1996. There is again no significant region during July in 
the year 2000 like 1997. Thus we can conclude the red-noise 
wavelet power spectra effectively captures the oscillations in 
the SWH data which corresponds to seasonal variations. 
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