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Abstract: This paper deals with the performance analysis 

of a 3-phase Self-Excited Induction Generator (SEIG) 

incorporating an artificially intelligent Electronic Load 

Controller (ELC). ELCs are used to maintain a constant 

voltage at the generator output terminals. Intelligent 

ELCs employing the Bayesian Regularization and the 

Levenberg Marquardt algorithms of Artificial Neural 

Network are used as the control techniques. These are 

implemented in SIMULINK and adequate results are 

obtained. 
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I. INTRODUCTION 

In many remote areas, the supply of electricity 

through the grid becomes troublesome and costly. 

In such areas exploiting renewable energy 

resources to produce electrical energy is an 

acceptable alternative. Hydro-energy is the most 

dependable substitute among the other non- 

conventional energy resources. Areas, where water 

streams and rivulets are available; installing a pico- 

hydro power plant, is economical for stand-alone 

electrical power generation. In such cases, Self- 

Excited Induction Generators (SEIGs) are preferred 

for the generation of electricity [1]-[4]. 

The demerit associated with SEIGs is that it fails 

to regulate the generator terminal voltage with the 

variation in consumer loads. To overcome this 

problem, an Electronic Load Controller (ELC) is 

used in conjunction with the SEIG [5][6]. 

The ELC considered comprises a three-phase 

uncontrolled rectifier circuit, a chopper switch, and 

a ballast load. The performance of ELCs equipped 

with a Proportional Integral (PI) controller and an 

Artificial Neural Network (ANN) based controller 

is evaluated. 

ANN is an efficient soft computing tool that 

imitates the human nervous system for solving 

complex problems. Also, it is effectively applied in 

controllers as found in the literature [7]-[9]. The 

Bayesian Regularization (BR) and the Levenberg 

Marquardt (LM) algorithms of ANN are 

implemented in this paper. These are used to 

control the switching order of the chopper. 

II. SYSTEM ILLUSTRATION

The variation of consumer load or main load is 

balanced by the ELC. This is done by regulating 

the amount of power that is dumped in a resistive 

load, which is often known as the ballast load or 

dump load. Heaters are generally used as the 

ballast loads. Figure1 shows the diagrammatic 

representation of a three-phase SEIG-ELC system. 
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Figure1.Simplified diagram of a three-phase SEIG with ELC 

The figure shown above represents a system comprising 

a 3-phase delta-connected SEIG connected to an 

excitation capacitor bank, the main load, and the ELC. 

The chopper switch used in the ELC circuit is an 

Insulated Gate Bipolar Transistor (IGBT). The chopper 

is driven by gate pulses obtained from the output of a 

voltage controller. The switching succession of the 

chopper is controlled in such a way that a constant 

voltage and hence a constant power is maintained at the 

generator output terminals. 

III. MODEL OF ELECTRONIC LOAD CONTROLLER 

The peak ac input voltage to the ELC can be calculated 

as 

Vac(p) = √2× VL  = √2× 230 = 325.27 V (1) 

Here VL is the Root Mean Square (RMS) value of the 

generator phase voltage. During transient 

circumstances, an overvoltage of 10% of the rated 

voltage of the generator 

may appear at the input of the ELC. Thereby the peak 

ac input voltage for such condition will be 

Vac(p) = √2× (VL  + 0.1 × VL) = 357.79V (2) 

The dc output voltage of the three-phase uncontrolled 

rectifier may be calculated as 

Vdc = (3√2 VL)/∏ = 310.61V (3) 

The rectifier and chopper of the ELC have a voltage 

rating determined by the RMS value of ac input voltage 

to the rectifier and average value of dc output voltage 

from the rectifier. The current rating for the same can 

be calculated as 

Iac = P/ (√3×V L) = 5.52A (4) 

where P indicates the power rating of the 3-phase SEIG. 

The peak ac input current to the ELC can be determined 

by accounting a distortion factor of 0.95 and a crest 

factor of 2.0 for the three-phase rectifier as follows 

Iac(p) = (Iac  /0.95)×2 = 11.63A (5) 

The resistance of the ballast load (Rb) may be 

calculated as 

Rb = (Vdc)
2 / P = 44Ω (6) 
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IV. ARTIFICIAL NEURAL NETWORK-BASED 

ELECTRONIC LOAD CONTROLLER 

ANN consists of processing units (neurons) 

interconnected to form a network. A suitable learning 

algorithm can be used to train the network and therefore 

minimize the error between the target outputs and 

actual outputs of a system [10]. The BR and LM 

algorithms of ANN are used for the purpose. The output 

of the network is correlated with a saw tooth carrier 

waveform to produce gating signals. The gate pulses 

are then fed to the chopper to act. The representation of 

ANN is shown in Figure2. 

a. Bayesian Regularization (BR) algorithm:

Regularization improves network performance

by modifying the performance function. The

performance function is the sum of the square 

of error and the sum of the square of network 

weights [11]-[13]. Figure3 shows the function 

approximation and Figure5 shows the error 

minimization by the BR algorithm. 

b. Levenberg Marquardt (LM) algorithm: The

LM algorithm reduces the error by minimizing

the performance function [14]-[16]. The

performance function is the mean of the square

of the approximate relationship between the

inputs and outputs of a system. Figure4 shows

the function approximation and Figure6 shows

the error minimization by the LM algorithm.

Figure2. Representation of ANN 

Figure3. Function approximation 

by BR Algorithm 

Figure4. Function approximation 

by LM Algorithm 

Figure5. Error minimization by BR 

Algorithm 

Figure6. Error minimization by LM 

Algorithm 

From the graphs obtained, it is found that 

the LM algorithm has a better function 

approximation and error minimization 

capability over the BR algorithm. 
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V. RESULTS AND DISCUSSION 

SIMULINK in MATLAB has been used to model a 

three-phase, delta connected, 2.2KW, 230V, 7.78A 

Self-Excited Induction Generator. A capacitor bank of 

capacitance 50μF per phase is connected for excitation 

of the SEIG. The main load on the generator is varied 

from an initial value of 26.45W to 352.67W, 52.9W, 

and 293.89W at 2 seconds (sec), 4 seconds and 6 

seconds respectively. Simulated results obtained 

without using ELC and using PI controller based ELC 

are shown in Figure7 and Figure8 respectively. 

Figure7: SEIG phase voltage without 

using ELC. 

Figure8: SEIG phase voltage with 

using ELC. 

From Figure7 and Figure8, it is seen that ELC using a 

PI controller is capable of regulating the SEIG output 

voltage. 

Figure9 and Figure10 represent the controlling 

efficiency of the ELC utilizing the BR and the LM 

algorithms of ANN respectively. 

Figure9: SEIG phase voltage using the 

BR algorithm. 

Figure10: SEIG phase voltage using 

the LM algorithm. 

From Figure9 and Figure10, it is seen that ELC 

employing the LM algorithm has better controlling 

efficiency than the BR algorithm. 
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From the results obtained, it can be comprehended that 

both the ANN-based algorithms used as control 

techniques are more efficient than the conventional 

controller. Both algorithms are having good perfection, 

while the LM algorithm gives a more accurate and 

stable convergence. 

VI. CONCLUSION

The performance evaluation of the three different 

control techniques employed in the SEIG-ELC system 

has been done. The results achieved infer that the ANN 

controllers are very much suitable to be used in ELCs. 

Thereby these technologies can be productively applied 

in SEIG-ELC systems for supplying a regulated voltage 

and hence a regulated power at varying consumer loads. 

APPENDIX 

The parameters of the considered machine are as 

follows: 

3-phase, delta connected, 2.2KW, 230V, 7.78A, 4 pole, 

50 Hz, Xls=0.00442 kΩ, Xlr = 0.00442 kΩ, Rs = 
0.00288k Ω, Rr = 0.00288 kΩ, C = 50μF. 

The relation between the magnetizing inductance (Lm) 

and the magnetizing current (Im)of the machine is 
expressed as: 
Lm = 0.3177 for Im≤ 0.75 

=0.3502 -0.0349 Im  - 0.0017I  2   for 0.75 < Im ≤ 
4.25 

= 0.17667 for Im > 4.25 
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