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ABSTRACT: The research progress of swarm 

robotics is reviewed in details. The swarm robotics is 

a new approach to the coordination of multi-robotic 

systems which is inspired from nature and is a 

combination of swarm intelligence and robotics, 

which shows cooperation of nature swarm and 

swarm intelligence and describes the modelling 

methods of swarm robotics, followed by a list of 

several widely used swarm robotics entity projects 

and simulation platforms. In this paper, 

classification of existing researches, problems and 

algorithms aroused in the study of swarm robotics 

are presented including cooperative control 

mechanisms in swarm robotics for flocking, 

navigating and searching applications. 

Keywords: Cooperative control, Modelling, 

Simulation, Swarm robotics applications. 

1. Introduction

Swarm robotics is the study of how to coordinate large 

groups of relatively simple robots through the use of 
local rules. It takes inspiration from societies of insects 

that can perform tasks that are beyond the capabilities 

of the individuals. Most swarm intelligence researches 

are inspired from how the nature swarms, such as social 

insects, fishes or mammals, interact with each other in 

the swarm in real life [1]. SR is closely related to the 

idea of SI and it shares its interest in self-organized 

decentralized systems. Hence, it offers several 

advantages for robotic applications such as scalability, 

and robustness due to redundancy [2] such as path 

planning [3], nest constructing [4], task allocation [5] 
and many other complex collective behaviours in 

various nature swarm [6-8]. 

2. Cooperation of Nature Swarms

The individuals in the nature swarm shows very poor 

abilities, yet the complex group behaviours can emerge 

in the whole swarm, such as migrating of bird crowds 

and fish schools, and foraging of ant and bee colonies as 

shown in Fig.1.  

3. Swarm Intelligence

 A swarm intelligence system consists typically of a 
population of relatively simple agents (relatively 

homogenous or there are a few types of them [9]) 

interacting only locally with themselves and with their 

environment, without having a global knowledge about 
their own state and of the state of the world. Moreover, 

the overall observed behaviour is emerged in response 

to the local environment and to local interactions 

between the agents that follow often very simple rules 

[10]. 

 Natural swarm based theories have been applied to 

solve analogous engineering problems in several 

domains engineering from combinatorial optimization 

to rooting communication network as well as robotics 

applications, etc. (for a recent comprehensive review, 

readers can refer to [11]). The most well-known swarm 

based algorithms are: Ant Colony Optimization 
Algorithms (ACO), Particle Swarm Optimization 

Algorithms (PSO), Artificial Fish Swarm Algorithm 

(AFSA) and Bee based Algorithms. The ACO 

algorithm is inspired from the foraging behaviour of ant 

colonies in finding shortest paths from their nests to 

food sources. The source of inspiration of PSO based 

algorithms comes especially from the behaviour 

observed in bird flocking or fish schooling when they 

are moving together for long distances to search for 

food sources, whereas The AFSO algorithm is inspired 

from the collective movement observed in the different 
behaviours exhibited by fishes such as searching for 

food, following other fishes, protecting the group 

against dangers and stochastic search [12]. Bee based 

algorithms can be classified into three different main 

groups: (1) the honeybee' foraging behaviour based 

algorithms, (2) the ones based on mating behaviour in 

honeybee, and (3) the queen bee evolution process 

based algorithms (more details can be find in [13].) 

4. Multi-Robot System

Multi-robot systems (MRS) are born to overcome the 
lack in information processing capability and many 

other aspects of single robots that are not capable to dial 

with special tasks; which, in order to be efficiently 

completed, need cooperation and collaboration between 

groups of robots [14]. Since its introduction in the late 

1980s, various works (such as: cellular robotics, 

collective robotics, and distributed robotics) have been 

issued to describe group of simple physical robots 

collaborating together to perform specific tasks. MRS 

have also achieve a great success and made a great 

progress in many areas such as cooperative 

transportation and aggregation, environmental 
monitoring, search-and-rescue missions, foraging, and 

space exploration [15].  

In such task; even the simplicity in design and the low- 
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                                Fig. 1. Biological swarms in the nature 

 

 

 

 

 

cost in productivity, as well as the increase in 
capabilities, flexibility, and fault tolerance advantages 

gained when using multi-robots instead of a single one; 

however with the new arising challenges such as 

decentralization in control and self-organization, 

researchers in multi robotic field begun to make 

attention to the increase progress known in swarm 

intelligence systems giving birth to the new sub-domain 

research “swarm  robotics”. 

 

5. Swarm Robotics 

Swarm robotics is the study of how large number of 
relatively simple physically embodied agents can be 

designed such that a desired collective behaviour 

emerges from the local interactions among agents and 

between the agents and the environment. 

 

Characteristics of Swarm Robotics: 

i) Robots of the swarm must be autonomous 

robots, able to sense and actuate in a real 

environment. 

ii) The number of robots in the swarm must 

be large or at least the control rules allow 

it. 

iii) Robots must be homogeneous. There can 

exist different types of robots in the 

swarm, but these group must not be too 
many. 

iv) The robots must be incapable or 

inefficient respect to the main task they 

have to solve, this is, they need to 

collaborate in order to succeed or to 

improve the performance. 

v) Robots have only local communication 

and sensing capabilities. It ensures the 
coordination is distributed, so scalability 

becomes one of the properties of the 

system 

 

6. Comparison of Swarm Robotic (SR) and MRS 
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7. Swarm Robot vs. Single Robot 

 

vi) Swarm robots can perform a large number 

of task domain. 

vii) Swarm robots have greater efficiency. 

viii) Swarm robots have improved 
performance. 

ix) Swarm robots have fault tolerance. 

x) They are robust in nature. 

xi) Swarm robots are having low economic 
costs. 

 

8. Applications of Swarm Robotics 

Several potential application scopes [16] of swarm 

robotics which are very suitable are described below. 

 

1. Tasks cover large area 

Swarm robotics system is distributed and specialized for 

the tasks requiring a large area of space, e.g. large 

coverage. The robots in the swarm are distributed in the 

environment and can detect the dynamic change of the 
entire area, such as chemical leaks or pollution. The 

swarm robotics can complete such tasks in a better way 

than sensor network since each robot can patrol in an 

area rather than stay still. This means that the swarm 

can monitor the area with fewer agents. Besides 

monitoring, the robots in the swarm can locate the 

source, move towards the area and take quick actions. 

In an urgent case, the robots can aggregate into a patch 

to block the source as a temporary solution. 

 

2. Tasks dangerous to robot 

Thanks to the scalability and stability, the swarm 
provides redundancy for dealing with dangerous tasks. 

The swarm can suffer loss of robots to a great extent 

before the job has to be terminated. The robots are very 

cheap and are preferred for the areas which probably 

damage the workers. In some tasks, the robots may be 

irretrievable after the task, and the use of complex and 

expensive robots are thus economically unacceptable 

while the swarm robotics with cheap individuals can 

provide the reasonable solutions. For example, Murphy 

et al. [17] summarized the usage of robotics in mine 

rescue and recovery. They pointed out that although 
several applications already in use, the robots are 

beyond the requirement to show a desired performance 

in the tough environment under the 

ground. They proposed 33 requirements for the robots 

so as to achieve an acceptable behaviour. 

 

3. Tasks require scaling population 

Workload of some tasks may change over time, and the 
swarm size should be scaled based upon the current 

workload for high efficiency in both time and 

economics. For example, in the task of clearing oil 

leakage after tank accidents, the swarm should maintain 

a high population when the oil leaks fast at the 

beginning of the task and gradually reduce the robots 

when the leak source is plugged and the leaking area is 

almost cleared. The swarm also scales among different 

regions if the progress of these regions becomes 

unbalanced. Stormont [18] described the potential for 

using the swarms of autonomous robots to react a 

disaster site in the first 24 h. He summarized the swarm 
that can search for the victims with the highest 

probability of finding survivors, and made some 

suggestions for future research in this area. 

 

1. Tasks require redundancy 

Robustness in the swarm robotics systems mainly 

benefits from the redundancy of the swarm, i.e. 

removing some robots does not have a significant 

impact on the performance. Some tasks focus on the 

result rather than the process, i.e. the system should 

make sure that the task will be completed successfully 
mostly in the way of increasing redundancy. 

 

9. General model of Swarm Robotics 

 

Swarm robotics model is a key component of 

cooperative algorithm that controls the behaviours and 

interactions of all individuals. In the model, the robots 

in the swarm should have some basic functions, such as 

sensing, communicating, motioning, etc.  

The model is divided into three modules based on the 

functions which the module utilizes to accomplish 

certain behaviours: information exchange, basic and 
advanced behaviour. 

 

 
        Fig.2. General model of swarm robotics 

 

10. Techniques  

The goal of this section is to classify the articles 

published in the swarm robotics literature according to 

the methods used to design or to analyze swarm 

robotics. 
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Design methods  

 

Design is the phase in which a system is planned and 

developed starting from the initial specifications and 

requirements. Unfortunately, in swarm robotics there 
are still no formal or precise ways to design individual 

level behaviours that produce the desired collective 

behaviour. The intuition of the human designer is still 

the  

main ingredient in the development of swarm robotics 

systems. We divide the design methods into two 

categories: behaviour-based design and automatic 

design. 

 

Behaviour-based design methods 

In swarm robotics, the most commonly used design 

method involve developing, by hand, the individual 
behaviours of the robots which results in the collective 

behaviour of the swarm. Designing a behaviour for a 

swarm robotics system is a trial and error process: 

individual behaviours are iteratively adjusted and tuned 

until the resulting collective behaviour is obtained. For 

this reason, behaviour-based design is inherently a 

bottom-up process.  

 

1. Probabilistic finite state machine design  
Generally, in swarm robotics, an individual robot does 

not plan its future actions, but it takes decisions only on 
the basis of its sensory inputs and/or its internal 

memory (Brooks, 1986). One of the most adopted 

design method to obtain such behaviours is the use of a 

finite state machine, henceforth FSM. 

In swarm robotics, probabilistic FSMs (henceforth 

PFSMs) are more commonly used. Behaviours obtained 

through the use of PFSMs are asynchronous, thus 

allowing the robots to show different individual 

behaviours at the same time. Asynchronicity can also be 

used to reduce interference. 

In PFSMs, the transition probability between states can 

be fixed or can change over time. The transition 
probability is fixed when a single probability value is 

defined and used throughout the execution of the 

collective behaviour. An example can be found in the 

work of Soysal and S¸ahin (2005). The transition 

probability is not fixed when it is defined through a 

mathematical function of one or more parameters of the 

system. One of the most widely used function is the 

response threshold function developed by Granovetter 

(1978).  In the response threshold function, the 

probability to switch to a new state is usually related to 

the current state of the robot. The transition probability 
p depends on: s, a stimulus that represents a measure of 

the transition urgency; θ, a threshold on the stimulus; 

and β, a sensitivity parameter. The function is non-

linear: When s << θ, the transition probability is very 

low, whereas when s >> θ it is very high. In the 

example in the figure, s ranges in [0, 100], θ = 50 and β 

= 8. 

 

 
                     Fig. 3 The response threshold function  

2. Virtual physics-based design  
The virtual physics-based design method draws 

inspiration from physics. Each robot is considered as a 

virtual particle that exerts virtual forces on other robots. 

One of the first works using virtual physics-based 

design was by Khatib (1986), who used the concept of 
artificial potential field. In this and in some following 

works, the robots are subject to repulsive virtual forces 

originating from the environment: the goal is associated 

with an attractive force and the obstacles to repulsive 

forces.  

The main advantages of virtual physics-based design 

methods are: i) a single mathematical rule smoothly 

translates the entire sensory inputs space into the 

actuators output space without the need for multiple 

rules or behaviours; ii) the obtained behaviours can be 

combined using vectorial operations; iii) some 

properties (such as robustness, stability, etc.) can be 
proved using theoretical tools from physics, control 

theory or graph theory. 

 

3. Automatic design methods  
Automatic design methods are methods with which a 

behaviour can be learned by a robot without the explicit 

intervention of the developer. Automatic design 

methods are typically studied within machine learning, 

a very broad research domain that spans across artificial 

intelligence and statistics. The application of machine 

learning methods to multi-robot systems is called 
cooperative multi-agent learning. 

The section is organized as follows. We first introduce 

reinforcement learning (Kaelbling et al., 1996; Sutton 

and Barto, 1998) and we identify the key challenges of 

the application of the methods developed for 

reinforcement learning to swarm robotics. We then 

present evolutionary robotics (Nolfi and Floreano, 

2000), the application of evolutionary computation 

techniques to single and multi-robot systems. 

4. Reinforcement Learning  
 RL traditionally refers to a class of learning problems: 
an agent learns a behaviour through trial-and-error 

interactions with an environment and by receiving  

positive and negative feedback for its actions. In RL, 
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the robot receives a reward for its actions. The goal of 

the robot is to learn automatically an optimal policy, 
that is, the optimal behaviour mapping robot states to 

robot actions. The behaviour is optimal in the sense that 

it maximizes the rewards received from the 

environment. 

5. Evolutionary robotics - Evolutionary robotics (Nolfi 

and Floreano, 2000) (henceforth ER) is an automatic 

design method that applies evolutionary computation 

techniques (Goldberg, 1989; Holland, 1975) to single 

and multi-robot systems. Evolutionary computation is 

inspired by the Darwinian principle of natural selection 

and evolution. In ER, the individual behaviour can be 

represented in many ways, such as finite state machines 
or virtual force functions (Hettiarachchi, 2007). 

Typically, the evolutionary method is used to find the 

parameters of an artificial neural network (henceforth 

NN). Although several types of NN exist in the 

literature, they can be roughly categorized in two main 

classes: feed forward NN (Fine, 1999) and recurrent NN 

(Beer and Gallagher, 1992; Elman, 1990). Feed-forward 

NNs are used for individual behaviours that require no 

memory of previous observations and actions. 

Conversely, recurrent NNs are used for individual 

behaviours that require a memory of previously seen 
input patterns. ER with recurrent neural networks has 

been extensively studied in swarm robotics by Ampatzis 

(2008). 

 

11. Analysis and Results 

Analysis is an essential phase in an engineering process. 

In the analysis phase, the swarm engineer is interested 

in seeing whether a general property of the designed 

collective behaviour holds or not. The ultimate goal to 

obtain is that a swarm of real robots exhibits the desired 

collective behaviour with the desired properties. 

Properties of the collective behaviours are usually 
analyzed by means of models. 

Swarm robotics systems can be modelled at two 

different levels: the individual level, or microscopic 

level, that models the characteristics of the single 

individuals and the interactions among them; the 

collective level, or macroscopic level, that models the 

characteristics of the entire swarm. The development of 

models for analyzing swarm robotics systems at both 

levels of abstraction is still a subject of study and 

research. 
 

Microscopic models  
 Microscopic models take into account each robot 

individually, analyzing both robot-to-robot and robot-

to-environment interactions. In the swarm robotics 

field, many models have been developed with different 

levels of abstraction: the simplest models consider the 

robots as point-masses; intermediate complexity models 

consider 2D worlds with kinematic physics; more 

complex models consider 3D worlds with dynamic 

physics where the details of each sensor and actuator 

are modelled. 
Microscopic models in which the elements composing a 

system are simulated with the use of a computer are 

traditionally called simulations. Simulations are among 

the most used tools to analyze and validate swarm 

robotics systems. The vast majority of the works 

presented have been analyzed using simulators.  

 

Macroscopic models  
 Macroscopic models consider swarm robotics systems 

as a whole. The individual elements of the systems are 

not taken into account in favour of a description of the 
system at a higher level.  We classify works in 

macroscopic modelling into three categories. In the first 

category, we consider works resorting to rate or 

differential equations. In the second category, we 

consider works where classical control and stability 

theory are used to prove properties of the swarm. In the 

third category, we consider other approaches. 

 

Rate and differential equations  
 One of the first works that uses rate equations for 

modelling swarm robotics systems is by Martinoli et al. 

(1999). In this and in follow-up works, the term rate 
equations was used to denote such models. Rate 

equations describe the time evolution of the proportion 

of robots in a particular state over the total number of 

robots.  

The procedure is the following: i) First, a set of 

variables is defined. Usually, one variable is defined for 

each state of the individual-level PFSM. These 

variables are used to track the proportion of the robots 

in the corresponding states. ii) Second, for each 

variable, an equation is defined (Lerman and Galstyan, 

2002). This equation is called rate equation because it is 
used to describe the time evolution of that variable, that 

is, the time evolution of the proportion of the robots in 

the corresponding state. 

The rate equations method was used to model many 

swarm robotics systems. Liu and Winfield (2010) used 

the rate equations to model another foraging task 

involving the collection of energy units. The main 

advantage of the rate equation approach is that it is a 
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systematic method to translate microscopic models into 

macroscopic models.  

 

Classical control and stability theory  
The second set of works uses classical control and 
stability theory to prove properties of the swarm. Liu et 

al. (2003) and Gazi and Passino (2005) modelled a 

swarm of agents in a one-dimensional space using 

discrete-time discrete-event dynamical systems. Liu and 

Passino (2004) and Gazi and Passino (2004b) used 

Lyapunov stability theory to prove that the behavior 

studied was able to let a swarm achieve coherent social 

foraging in presence of noise. Similarly, Gazi and 

Passino (2003, 2004a) proved that, in specific 

conditions, a swarm of agents aggregates in one point of 

the environment. Finally, Hsieh et al. (2008) used delay 

differential equations to model task-allocation (agents 
allocating and re-allocating to different physical sites), 

proving the stability of the reached configuration. In the 

same work, the authors also proposed a method to 

compute the optimal transition matrix in order to obtain 

a swarm that reaches the desired configuration.  

 

Other modelling approaches  
In the third and final category we consider works in 

modelling that resort to other mathematical frameworks. 

Winfield et al. (2005) used linear time temporal logic to 

define properties of individual robots and of the swarm. 
The authors defined and proved two properties of the 

system: safety and liveness. The safety property is 

verified when the robots do not exhibit undesirable 

behaviours. The liveness property is verified when the 

swarm dynamics actually do evolve over time. Kazadi 

(2009) used a similar approach. The author expressed 

properties of the swarm with a mathematical language 

and proved their validity. The author proposed a way to 

define properties of a swarm robotics problem which he 

calls “model independent”, that is, they do not depend 

on the actual implementation of the agent/robot. He 

proposed model-independent properties for two 
collective behaviours: shape formation and flocking. 

Soysal and S¸ahin (2007) modelled aggregation using 

Markov chains and validated the prediction using 

simulation. The work of Turgut et al. (2008b) represents 

one of the first modelling attempts to bridge studies of 

flocking within physics with studies of flocking within 

robotics. 

 

12. Collective behaviours  
 In this section, we present a review of the main 

collective behaviours studied in the literature. We 
classify these collective behaviours into four main 

categories: spatially-organizing behaviours, navigation 

behaviours, collective decision-making and other 

collective behaviours. In the first category, spatially-

organizing behaviours, we consider behaviours that 

focus on how to organize and distribute robots in space. 

In the second category, navigation behaviours, we 

consider behaviours that focus on how to organize and 

coordinate the movements of a swarm of robots. In the 

third category, collective decision-making, we consider 

behaviours that focus on letting a group of robots agree 

on a common decision or allocate among different 

parallel tasks. In the last category, other collective 

behaviours, we consider behaviours that do not fall into 
any of the categories mentioned above. For each 

category, we give a brief description of the collective 

behaviour, its source of inspiration, the most common 

used approaches and the most significant available 

results. 

 

Spatially – organizing behaviours  

 In this section, we describe collective behaviours that 

focus on how to organize and distribute robots in space. 

Robots can be organized and distributed in space in 

several possible ways: aggregates, patterns, chains and 

structures of physically connected robots. 
(A) Aggregation Description – 

The goal of aggregation is to cluster all the robots of a 

swarm in a region of the environment. Despite being a 

simple collective behaviour, aggregation is a very 

useful building block, as it allows a swarm of robots to 

get sufficiently close one another so that they can 

interact. 

 Source of inspiration  
 Aggregation is a very common behaviour in nature. For 

example, aggregation can be observed in bacteria, 

cockroaches, bees, fish and penguins (Camazine et al., 
2001). Other examples of natural systems performing 

aggregation have been described by Gr¨unbaum and 

Okubo (1994); Breder Jr (1954); Jeanson et al. (2005); 

Am´e et al. (2006). 

 Approaches  
 In swarm robotics, aggregation is usually approached 

in two ways: probabilistic finite state machines 

(PFSMs) or artificial evolution. The most common 

approach is based on PFSMs: the robots explore an 

environment and, when they find other robots, they 

decide stochastically whether to join or leave the 

aggregate. In this approach, a stochastic component is 
often used in order to ensure that eventually only a 

single aggregate if formed. In the artificial evolution 

approach, the parameters of a neural network are 

automatically selected in order to obtain an aggregation 

behaviour.  

Results - Garnier et al. (2005) developed a system in 

which robots are used to replicate the behaviour 

observed in cockroaches by Jeanson et al. (2005). The 

robots are able to collectively aggregate in a circular 

arena using a PFSM approach. Another example of an 

aggregation behaviour based on a PFSM was developed 
by Soysal and S¸ahin (2005). In their work, a robot can 

be in one of three states: the repel state, in which the 

robot tends to get away from other robots; the approach 

state, in which the robot tends to get closer to other 

robots; and the wait state, in which the robot stand still. 

Soysal and S¸ahin where able to achieve both moving 

and static aggregation behaviours by changing the 

parameters of the system. 
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(B) Pattern formation  

 Description - Pattern formation aims at deploying 

robots in a regular and repetitive manner. Robots 

usually need to keep specific distances between each 

other in order to create a desired pattern. 

 Source of inspiration - Pattern formation can be found 

both in biology and in physics. Some biological 

examples are the spatial disposition of bacterial colonies 

and the chromatic patterns on some animal’s fur 

(Meinhardt, 1982). Some physics examples are 

molecules distribution and crystal formation (Langer, 

1980), and B´enard cells (Getling, 1998).  
Approaches - The most common way to develop 

pattern formation behaviors in robot swarms is to use 

virtual physics-based design. Virtual physics-based 

design uses virtual forces to coordinate the movements 

of robots. 

Results - Bah¸ceci et al. (2003) presented a review of 

works on pattern formation in which they analyzed 

centralized and decentralized behaviors. Another review 

on the topic has been published in 2009 by Varghese 

and McKee. Flocchini et al. (2008) focused on a 

theoretical analysis of pattern formation. The authors 
were able to formally prove that with a group of fully 

asynchronous robots it is possible to obtain only a 

subset of all possible patterns, whereas other patterns 

are achievable only with some kind of global 

knowledge such as a common orientation given by a 

compass. 

 

(C) Chain formation  

Description - In the chain formation behaviour, robots 

have to position themselves in order to connect two 

points. The chain that they form can then be used as a 

guide for navigation or for surveillance. 
Source of inspiration - The chain formation behaviour 

takes its inspiration from foraging ants. Deneubourg et 

al. (1990) studied and modelled the behaviour of 

Argentine ants which form chains of individuals 

connecting their nest with foraging areas. 

Results - Nouyan et al. (2008) developed a behaviour, 

based on PFSMs, in which the robots have two different 

exchangeable roles: explorer and chain member. In the 

explorer role, the robots are searching for chain 

members or for the goal area. When they find either a 

chain member or the goal, they switch to the chain 
member role and stop. Chain members can become 

explorer again according to a probability that increases 

over time if no other robots are perceived. Different 

configurations and approaches are analyzed and 

presented. Experiments with real robots and further 

analysis can be found in Nouyan (2008). 

Sperati et al. (2010) used artificial evolution to obtain a 

chain formation behaviour. In their work, the robots, by 

using communication through colored LEDs, are able to 

follow each other forming a double chain between two 

designated areas.Differently from other chain formation 

behaviours, in this work the obtained chain is composed 

of moving robots. 

 

(D) Self-assembly and morphogenesis  

Description - In robotics, self-assembly is the process 

by which robots physically connect to each other. Self-

assembly is used by a swarm of robots to create 

structures, sometimes called morphologies, which can 

be used for different purposes. Examples of such 

purposes are: to increase stability when navigating in 

rough terrains and to increase the pulling power of the 

robots. Morphogenesis focuses on how to obtain 

structures of physically connected robots. 

Source of inspiration - Morphogenesis can be 

observed in several species of ants. Ants are able to 
physically connect in order to perform different tasks. 

Some examples of structures created by ants are 

bridges, rafts and walls (Anderson et al., 2002). 

Approaches - From the swarm robotics perspective, 

self-assembly and morphogenesis pose two main 

challenges: how to assemble and generate the desired 

target structure, and how to control it to tackle specific 

tasks. Works focusing on the first issue are usually 

based on probabilistic finite state machines and rely on 

communication 

for coordination. A recent review of the literature on 
morphogenesis was conducted by Groß and Dorigo 

(2008b).Work focusing on the second issue, control, 

makes use either of artificial evolution or of 

probabilistic finite state machines. 

Results - Results on the functional aspect of self-

assembly depend strongly on the goal of the system 

considered. O’Grady et al. (2010) demonstrated that 

physically connected robots can navigate through 

difficult terrains better than robots that are not 

connected. In O’Grady et al.’s work, robots randomly 

explore an environment 

with slopes. Each robot is able to measure the steepness 
of these slopes and when a slope is steeper than a 

certain threshold, it can initiate a self-assembling 

procedure. Once connected into a structure, the robots 

can navigate in hazardous terrains thanks to the high 

mechanical stability given by the new morphology. 

Mondada et al. (2005) showed that physically 

connected robots are able to cross a ditch that is too 

large for a single robot to overcome. Finally Groß and 

Dorigo (2009) showed that physically connected robots 

are able to obtain better results, in terms of speed and 

distance, in the transportation of heavy objects when 
compared to non-connected robots. 

 

 

(E) Navigation behaviours  
- In this section, we describe collective behaviours that 

cope with the problem of coordinating the movements 

of a swarm of robots. Collective exploration is a 

collective behaviour in which robots cooperate to 
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explore an environment and perform navigation. The 

coordinated motion 

behaviour is used to make robots move together like a 

flock of birds or a school of fish.  

Description - In this section, we analyze two collective 
behaviours that, together, can be used to achieve 

collective exploration of an environment: area coverage 

and swarm-guided navigation. The goal of area 

coverage is to deploy robots in an environment in order 

to create a regular or irregular grid of communicating 

robots.  

Source of inspiration - Area coverage and navigation 

are common behaviours of social animals. For example, 

ants use pheromones trails to find the shortest route 

between two points and bees directly communicate 

destinations in the environment by means of dances 

(Camazine et al., 2001). Area coverage has been 
intensively studied also by the wireless sensor networks 

(WSN) community. A survey of area coverage 

behaviours in WSN was conducted by Wang et al. 

(2009). 

Approaches - In swarm robotics, the most common 

way to tackle area coverage is to use virtual physics-

based design to obtain a grid covering the environment. 

Works on swarm-guided navigation instead focus on 

communication, thus usually employ probabilistic finite 

state machines and take inspiration either from network 

routing protocols or natural systems. 
Results - Payton et al. (2001) used robots as “virtual 

pheromones”. Some robots, which are already 

deployed, are able to create a gradient between the 

source and the target by exchanging messages. This 

gradient can then be exploited for navigation by other 

robots or by a human.  

Di Caro et al. (2009) presented a work in which robots 

are able to navigate from a source to a target location. 

The proposed behavior is based on communication with 

other passive robots already available in the 

environment. These passive robots are assumed busy 

with other collective behaviours but are able to guide 
the navigating robots.  

Stirling and Floreano (2010) used a swarm of flying 

robots to achieve area coverage. In their work, the 

robots are deployed sequentially and each robot 

determines its position according to the position of the 

previously deployed robots. 

 

(F) Coordinated motion 

Description - In coordinated motion, also known as 

flocking, robots move in formation similarly to schools 

of fish or flocks of birds. For a group of autonomous 
robots, coordinated motion can be very useful as a way 

to navigate in an environment with limited or no 

collisions between robots and as a way to improve the 

sensing abilities of the swarm (Kaminka et al., 2008). 

Source of inspiration - Collective motion behaviours 

are frequent in almost all social animals. In particular, 

flocking in group of birds or schooling in group of fish 

are impressive examples of self-organized collective 

motion (Okubo, 1986). Through coordinated motion, 

animals gain several advantages, such as a higher 

survival rate, more precise navigation and reduced 

energy consumption (Parrish et al.,2002). 

Approaches - In swarm robotics, collective motion 

behaviours are usually based on virtual physics-based 
design. Robots are supposed to keep a constant distance 

from one another and an uniform alignment while 

moving (Reynolds, 1987). Collective motion behaviours 

have also been obtained via artificial evolution. 

Results - C¸ elikkanat and S¸ahin (2010), extending the 

work of Turgut et al. (2008a), showed that it is possible 

to insert some “informed” robots in the swarm in order 

to direct the movement of other “non-informed” robots. 

The informed robots are the only ones in the group with 

knowledge of the goal direction. Increasing the 

number of informed robots or decreasing the individual 

tendency to follow other robots increase the accuracy of 
motion of the group with respect to the desired goal 

direction. These works have been extended by Ferrante 

et al. (2010b) who developed alternative 

communication strategies in which some robots 

explicitly communicate their headings. 

 

(G) Collective transport 

Description - Collective transport, also known as group 

prey retrieval, is a collective behaviour in which a 

group of robots has to cooperate in order to transport an 

object. In general, the object is heavy and cannot be 
moved by a single robot, making cooperation necessary. 

The robots need to agree on a common direction in 

order to effectively move the object towards a target. 

Source of inspiration - Ants often carry prey 

cooperatively. Kube and Bonabeau (2000) analyzed 

how cooperative transport is achieved in ant colonies. 

When ants find their target, they physically attach to it 

and then start to pull and push. If they do not perceive 

any movement after a while, they change the orientation 

of their body and try again. If even this does not work, 

they detach, re-attach at a different point and try again. 

Approaches - In swarm robotics, collective transport 
behaviours are obtained by using probabilistic finite 

state machines or artificial evolution. Cooperation is 

obtained either through explicit communication of the 

desired motion direction, or through indirect 

communication, that is, by measuring the force applied 

to the carried object by the other robots. 

Results - Donald et al. (1997) proposed three 

behaviours based respectively on: force sensing, 

position sensing and orientation sensing. This work was 

one of the first works aimed at studying collective 

transport without a centralized controller and with 
limited communication. 

Ferrante et al. (2010a) developed a collective transport 

behavior in which, through communication, a group of 

robots can agree on a common moving direction 

towards a goal by averaging the individual desired 

direction. The proposed solution is able to make robots 

move towards a common goal while avoiding obstacles. 

This work was developed for the Swarmanoid project 

(Dorigo et al., 2012). 
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(H) Collective decision-making  
- Collective decision-making is a collective behaviour 

in which a swarm of robots collectively makes a 
decision. Collective decision-making deals with how 

robots influence each other when making choices. It can 

be used to answer two opposite needs: agreement and 

specialization. A typical example of agreement in 

swarm robotics systems is consensus achievement. The 

desired outcome of consensus achievement is that all 

the robots of the swarm eventually converge towards a 

single decision among the possible alternatives. A 

typical example of specialization, instead, is task 

allocation. The desired outcome of task allocation is 

that the robots of the swarm distribute themselves over 

the different possible tasks in order to maximize the 
performance of a system. 

 

(I) Concensus achievement  

Description - Consensus achievement is a collective 

behaviour used to allow a swarm of robots to reach 

consensus on one choice among different alternatives. 

The choice is usually the one that maximize the 

performance of the system. Consensus is generally 

difficult to achieve in swarm of robots due the fact that 

very often the best choice may change over time or may 

not be evident to the robots due to their limited sensing 
capabilities. 

Source of inspiration - Consensus achievement is 

displayed in many insect species. For example, ants are 

able to decide between the shortest of two paths using 

pheromones (Camazine et al., 2001). Bees have 

mechanisms to collectively decide which is the best 

foraging area or which is the best nest location among 

several possibilities (Couzin et al., 2005). These 

mechanisms work even if not all the individuals in the 

swarm have an opinion on the best choice. Cockroaches 

also display consensus achievement behaviors when 

performing aggregation (Am´e et al.,2006). 
Approaches - In swarm robotics, the approaches used 

for consensus achievement can be divided into two 

categories according to how communication is used. In 

the first category, direct communication is used: each 

robot is able to communicate its preferred choice or 

some related information. In the second category, 

instead, indirect communication is used: the decision is 

performed through some indirect clues, such as the 

density of the robot population. 

Results - Garnier et al. (2005) studied consensus 

achievement in cockroaches by using a swarm of robots 
to replicate the experiment by Am´e et al. (2006). In 

their system, consensus achievement is obtained 

through indirect communication. The focus of this work 

is both on consensus achievement and aggregation. 

Guti´errez et al. (2010) developed a strategy for 

consensus achievement through direct communication 

in a swarm of robots performing foraging. The robots 

are able to decide between two foraging areas. When 

two robots get close, they exchange their measured 

distances between the nest and the latest visited goal. 

Each robot performs an average of its measured 

distance with the one received from the other robots. In 

this way, the robots are able to agree on which area is 

the closest 
to the nest and discard the other one even when the 

measured distances are noisy. 

 

(J) Task allocation 

Description - Task allocation is a collective behaviour 

in which robots distribute themselves over different 

tasks. The goal is to maximize the performance of the 

system by letting the robots dynamically choose which 

task to perform. 

Source of inspiration - Task allocation can be 

observed in natural systems such as ant and bee 

colonies – e.g., Theraulaz et al. (1998). For example, in 
ant or bee colonies, part of the swarm can perform 

foraging while another part looks after the larvae. Task 

allocation is not fixed but can change over time. 

Approaches - In swarm robotics, task allocation is 

mainly obtained through the use of probabilistic finite 

state machines. To promote specialization, the 

probabilities of selecting one of the available tasks are 

either different among the robots or they can change in 

response to task execution or messages from other 

robots. In swarm robotics, task allocation has been 

studied almost exclusively on robots performing 
foraging.  

Results - Pini et al. (2011) considered a situation in 

which robots can choose between carrying a prey 

directly from the source to the nest and storing it in a 

dedicated two-sided structure called TAM (Brutschy et 

al., 2012). Stored prey can be collected by robots 

waiting on the other side of the structure and carried to 

the nest. By tuning the maximum waiting time, the 

authors were able to achieve task allocation, 

maximizing the throughput of the system. 

Conclusion 

 
Swarm robotics is a relatively new research area that 

takes its inspiration from swarm intelligence and 

robotics. It is the result of applying swarm intelligence 

techniques into multi-robotics.  

Swarm robotics is an approach to collective robotics 

that has received a great deal of attention in recent 

years. Swarm robotics aims at developing systems that 

are robust, scalable and flexible. The authors hereby 

proposed several fundamental problems to solve in 

future before the system can really be adopted in 

everyday life. How can the cooperative schemes 
inspired from the nature swarms integrate with the 

limited sensing and computing abilities for a desired 

swarm level behaviour? How to describe the swarm 

robotics system in a mathematical model which can 

predict the system behaviours at both individual and 

swarm level? How to propose a new and  general 

strategy that can take full advantage of the swarm 

robotics system? And finally, how to design a swarm of 

robots with low cost and limited abilities which has the 
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potential to show great Swarm level intelligence 

through carefully designed cooperation? 
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